|
| 1 | +# [1235. Maximum Profit in Job Scheduling](https://leetcode.com/problems/maximum-profit-in-job-scheduling/) |
| 2 | + |
| 3 | + |
| 4 | +## 题目: |
| 5 | + |
| 6 | +We have `n` jobs, where every job is scheduled to be done from `startTime[i]` to `endTime[i]`, obtaining a profit of `profit[i]`. |
| 7 | + |
| 8 | +You're given the `startTime` , `endTime` and `profit` arrays, you need to output the maximum profit you can take such that there are no 2 jobs in the subset with overlapping time range. |
| 9 | + |
| 10 | +If you choose a job that ends at time `X` you will be able to start another job that starts at time `X`. |
| 11 | + |
| 12 | +**Example 1:** |
| 13 | + |
| 14 | + |
| 15 | + |
| 16 | + Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70] |
| 17 | + Output: 120 |
| 18 | + Explanation: The subset chosen is the first and fourth job. |
| 19 | + Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70. |
| 20 | + |
| 21 | +**Example 2:** |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | + Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60] |
| 26 | + Output: 150 |
| 27 | + Explanation: The subset chosen is the first, fourth and fifth job. |
| 28 | + Profit obtained 150 = 20 + 70 + 60. |
| 29 | + |
| 30 | +**Example 3:** |
| 31 | + |
| 32 | + |
| 33 | + |
| 34 | + Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4] |
| 35 | + Output: 6 |
| 36 | + |
| 37 | +**Constraints:** |
| 38 | + |
| 39 | +- `1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4` |
| 40 | +- `1 <= startTime[i] < endTime[i] <= 10^9` |
| 41 | +- `1 <= profit[i] <= 10^4` |
| 42 | + |
| 43 | +## 题目大意 |
| 44 | + |
| 45 | + |
| 46 | +你打算利用空闲时间来做兼职工作赚些零花钱。这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]。给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime 和预计报酬 profit 三个数组,请你计算并返回可以获得的最大报酬。注意,时间上出现重叠的 2 份工作不能同时进行。如果你选择的工作在时间 X 结束,那么你可以立刻进行在时间 X 开始的下一份工作。 |
| 47 | + |
| 48 | + |
| 49 | +提示: |
| 50 | + |
| 51 | +- 1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4 |
| 52 | +- 1 <= startTime[i] < endTime[i] <= 10^9 |
| 53 | +- 1 <= profit[i] <= 10^4 |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +## 解题思路 |
| 58 | + |
| 59 | +- 给出一组任务,任务有开始时间,结束时间,和任务收益。一个任务开始还没有结束,中间就不能再安排其他任务。问如何安排任务,能使得最后收益最大? |
| 60 | +- 一般任务的题目,区间的题目,都会考虑是否能排序。这一题可以先按照任务的结束时间从小到大排序,如果结束时间相同,则按照收益从小到大排序。`dp[i]` 代表前 `i` 份工作能获得的最大收益。初始值,`dp[0] = job[1].profit` 。对于任意一个任务 `i` ,看能否找到满足 `jobs[j].enTime <= jobs[j].startTime && j < i` 条件的 `j`,即查找 `upper_bound` 。由于 `jobs` 被我们排序了,所以这里可以使用二分搜索来查找。如果能找到满足条件的任务 j,那么状态转移方程是:`dp[i] = max(dp[i-1], jobs[i].profit)`。如果能找到满足条件的任务 j,那么状态转移方程是:`dp[i] = max(dp[i-1], dp[low]+jobs[i].profit)`。最终求得的解在 `dp[len(startTime)-1]` 中。 |
0 commit comments