- "Again I must stress that it is, unfortunately, impossible to visualize this in large dimensions. For two dimensions, the data essentially *pushes up* the original surface to make *tall mountains*. The tendency of the observed data to *push up* the posterior probability in certain areas is checked by the prior probability distribution, so that less prior probability means more resistance. Thus in the double-exponential prior case above, a mountain (or multiple mountains) that might erupt near the (0,0) corner would be much higher than mountains that erupt closer to (5,5), since there is more resistance (low prior probability) near (5,5). The peak reflects the posterior probability of where the true parameters are likely to be found. Importantly, if the prior has assigned a probability of 0, then no posterior probability will be assigned there. \n",
0 commit comments