|
16 | 16 | "Reference: [Algorithmia Documentation](http://docs.algorithmia.com/)\n", |
17 | 17 | "\n", |
18 | 18 | "Table of Contents:\n", |
19 | | - "1. Authentication\n", |
20 | | - "2. Face Detection\n", |
21 | | - "3. Content Summarizer\n", |
22 | | - "4. Latent Dirichlet Allocation\n", |
23 | | - "5. Optical Character Recognition" |
| 19 | + "1. Installation\n", |
| 20 | + "2. Authentication\n", |
| 21 | + "3. Face Detection\n", |
| 22 | + "4. Content Summarizer\n", |
| 23 | + "5. Latent Dirichlet Allocation\n", |
| 24 | + "6. Optical Character Recognition" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "# 1. Installation\n", |
| 32 | + "\n", |
| 33 | + "You need to have the `algorithmia` package (version 0.9.3) installed for this notebook.\n", |
| 34 | + "\n", |
| 35 | + "You can install the package using the pip package manager:" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": null, |
| 41 | + "metadata": { |
| 42 | + "collapsed": true |
| 43 | + }, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "pip install algorithmia==0.9.3" |
24 | 47 | ] |
25 | 48 | }, |
26 | 49 | { |
|
41 | 64 | "cell_type": "markdown", |
42 | 65 | "metadata": {}, |
43 | 66 | "source": [ |
44 | | - "# 1. Authentication\n", |
| 67 | + "# 2. Authentication\n", |
45 | 68 | "\n", |
46 | 69 | "You only need your Algorithmia API Key to run the following commands." |
47 | 70 | ] |
|
63 | 86 | "cell_type": "markdown", |
64 | 87 | "metadata": {}, |
65 | 88 | "source": [ |
66 | | - "# 2. Face Detection\n", |
| 89 | + "# 3. Face Detection\n", |
67 | 90 | "\n", |
68 | 91 | "Uses a pretrained model to detect faces in a given image.\n", |
69 | 92 | "\n", |
|
167 | 190 | "cell_type": "markdown", |
168 | 191 | "metadata": {}, |
169 | 192 | "source": [ |
170 | | - "# 3. Content Summarizer\n", |
| 193 | + "# 4. Content Summarizer\n", |
171 | 194 | "\n", |
172 | 195 | "SummarAI is an advanced content summarizer with the option of generating context-controlled summaries. It is based on award-winning patented methods related to artificial intelligence and vector space developed at Lawrence Berkeley National Laboratory." |
173 | 196 | ] |
|
225 | 248 | "cell_type": "markdown", |
226 | 249 | "metadata": {}, |
227 | 250 | "source": [ |
228 | | - "# 4. Latent Dirichlet Allocation\n", |
| 251 | + "# 5. Latent Dirichlet Allocation\n", |
229 | 252 | "\n", |
230 | 253 | "This algorithm takes a group of documents (anything that is made of up text), and returns a number of topics (which are made up of a number of words) most relevant to these documents.\n", |
231 | 254 | "\n", |
|
325 | 348 | "cell_type": "markdown", |
326 | 349 | "metadata": {}, |
327 | 350 | "source": [ |
328 | | - "# 5. Optical Character Recognition\n", |
| 351 | + "# 6. Optical Character Recognition\n", |
329 | 352 | "\n", |
330 | 353 | "Recognize text in your images.\n", |
331 | 354 | "\n", |
|
416 | 439 | "name": "python", |
417 | 440 | "nbconvert_exporter": "python", |
418 | 441 | "pygments_lexer": "ipython2", |
419 | | - "version": "2.7.10" |
| 442 | + "version": "2.7.11" |
420 | 443 | } |
421 | 444 | }, |
422 | 445 | "nbformat": 4, |
|
0 commit comments