diff --git a/install/install_c.md b/install/install_c.md index 8c165aa..1abd840 100644 --- a/install/install_c.md +++ b/install/install_c.md @@ -38,7 +38,7 @@ enable TensorFlow for C: OS="linux" # Change to "darwin" for macOS TARGET_DIRECTORY="/usr/local" curl -L \ - "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-${OS}-x86_64-1.8.0-rc1.tar.gz" | + "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-${OS}-x86_64-1.8.0.tar.gz" | sudo tar -C $TARGET_DIRECTORY -xz The `tar` command extracts the TensorFlow C library into the `lib` diff --git a/install/install_go.md b/install/install_go.md index 26cbcc9..52a2a3f 100644 --- a/install/install_go.md +++ b/install/install_go.md @@ -38,7 +38,7 @@ steps to install this library and enable TensorFlow for Go: TF_TYPE="cpu" # Change to "gpu" for GPU support TARGET_DIRECTORY='/usr/local' curl -L \ - "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-$(go env GOOS)-x86_64-1.8.0-rc1.tar.gz" | + "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-$(go env GOOS)-x86_64-1.8.0.tar.gz" | sudo tar -C $TARGET_DIRECTORY -xz The `tar` command extracts the TensorFlow C library into the `lib` diff --git a/install/install_java.md b/install/install_java.md index 1b0bbdb..700ae01 100644 --- a/install/install_java.md +++ b/install/install_java.md @@ -36,7 +36,7 @@ following to the project's `pom.xml` to use the TensorFlow Java APIs: org.tensorflow tensorflow - 1.8.0-rc1 + 1.8.0 ``` @@ -65,7 +65,7 @@ As an example, these steps will create a Maven project that uses TensorFlow: org.tensorflow tensorflow - 1.8.0-rc1 + 1.8.0 @@ -123,12 +123,12 @@ instead: org.tensorflow libtensorflow - 1.8.0-rc1 + 1.8.0 org.tensorflow libtensorflow_jni_gpu - 1.8.0-rc1 + 1.8.0 ``` @@ -147,7 +147,7 @@ refer to the simpler instructions above instead. Take the following steps to install TensorFlow for Java on Linux or macOS: 1. Download - [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.8.0-rc1.jar), + [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.8.0.jar), which is the TensorFlow Java Archive (JAR). 2. Decide whether you will run TensorFlow for Java on CPU(s) only or with @@ -166,7 +166,7 @@ Take the following steps to install TensorFlow for Java on Linux or macOS: OS=$(uname -s | tr '[:upper:]' '[:lower:]') mkdir -p ./jni curl -L \ - "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-${TF_TYPE}-${OS}-x86_64-1.8.0-rc1.tar.gz" | + "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-${TF_TYPE}-${OS}-x86_64-1.8.0.tar.gz" | tar -xz -C ./jni ### Install on Windows @@ -174,10 +174,10 @@ Take the following steps to install TensorFlow for Java on Linux or macOS: Take the following steps to install TensorFlow for Java on Windows: 1. Download - [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.8.0-rc1.jar), + [libtensorflow.jar](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-1.8.0.jar), which is the TensorFlow Java Archive (JAR). 2. Download the following Java Native Interface (JNI) file appropriate for - [TensorFlow for Java on Windows](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-cpu-windows-x86_64-1.8.0-rc1.zip). + [TensorFlow for Java on Windows](https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow_jni-cpu-windows-x86_64-1.8.0.zip). 3. Extract this .zip file. @@ -225,7 +225,7 @@ must be part of your `classpath`. For example, you can include the downloaded `.jar` in your `classpath` by using the `-cp` compilation flag as follows: -
javac -cp libtensorflow-1.8.0-rc1.jar HelloTF.java
+
javac -cp libtensorflow-1.8.0.jar HelloTF.java
### Running @@ -239,11 +239,11 @@ two files are available to the JVM: For example, the following command line executes the `HelloTF` program on Linux and macOS X: -
java -cp libtensorflow-1.8.0-rc1.jar:. -Djava.library.path=./jni HelloTF
+
java -cp libtensorflow-1.8.0.jar:. -Djava.library.path=./jni HelloTF
And the following command line executes the `HelloTF` program on Windows: -
java -cp libtensorflow-1.8.0-rc1.jar;. -Djava.library.path=jni HelloTF
+
java -cp libtensorflow-1.8.0.jar;. -Djava.library.path=jni HelloTF
If the program prints Hello from version, you've successfully installed TensorFlow for Java and are ready to use the API. If the program diff --git a/install/install_linux.md b/install/install_linux.md index f19f827..16a232e 100644 --- a/install/install_linux.md +++ b/install/install_linux.md @@ -48,7 +48,7 @@ must be installed on your system: Toolkit. * The libcupti-dev library, which is the NVIDIA CUDA Profile Tools Interface. This library provides advanced profiling support. To install this library, - issue the following command for CUDA Toolkit >= 8.0: + issue the following command for CUDA Toolkit >= 9.0:
     $ sudo apt-get install cuda-command-line-tools
@@ -65,16 +65,38 @@ must be installed on your system:
     
     $ sudo apt-get install libcupti-dev
     
+ * **[OPTIONAL]** For optimized inferencing performance, you can also install - NVIDIA TensorRT 3.0. For details, see - [NVIDIA's TensorRT documentation](http://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#installing-tar). - Only steps 1-4 in the TensorRT Tar File installation instructions are - required for compatibility with TensorFlow; the Python package installation - in steps 5 and 6 can be omitted. Detailed installation instructions can be found at [package documentataion](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/tensorrt#installing-tensorrt-304) + **NVIDIA TensorRT 3.0**. The minimal set of TensorRT runtime components needed + for use with the pre-built `tensorflow-gpu` package can be installed as follows: + +
+    $ wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1404/x86_64/nvinfer-runtime-trt-repo-ubuntu1404-3.0.4-ga-cuda9.0_1.0-1_amd64.deb
+    $ sudo dpkg -i nvinfer-runtime-trt-repo-ubuntu1404-3.0.4-ga-cuda9.0_1.0-1_amd64.deb
+    $ sudo apt-get update
+    $ sudo apt-get install -y --allow-downgrades libnvinfer-dev libcudnn7-dev=7.0.5.15-1+cuda9.0 libcudnn7=7.0.5.15-1+cuda9.0
+    
**IMPORTANT:** For compatibility with the pre-built `tensorflow-gpu` - package, please use the Ubuntu **14.04** tar file package of TensorRT - even when installing onto an Ubuntu 16.04 system. + package, please use the Ubuntu **14.04** package of TensorRT as shown above, + even when installing onto an Ubuntu 16.04 system.
+
+ To build the TensorFlow-TensorRT integration module from source rather than + using pre-built binaries, see the [module documentation](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/tensorrt#using-tensorrt-in-tensorflow). + For detailed TensorRT installation instructions, see [NVIDIA's TensorRT documentation](http://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html).
+
+ To avoid cuDNN version conflicts during later system upgrades, you can hold + the cuDNN version at 7.0.5: + +
+    $  sudo apt-mark hold libcudnn7 libcudnn7-dev
+    
+ + To later allow upgrades, you can remove the hold: + +
+    $  sudo apt-mark unhold libcudnn7 libcudnn7-dev
+    
If you have an earlier version of the preceding packages, please upgrade to the specified versions. If upgrading is not possible, then you may still run @@ -194,7 +216,7 @@ Take the following steps to install TensorFlow with Virtualenv: Virtualenv environment:
(tensorflow)$ pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1-cp34-cp34m-linux_x86_64.whl
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0-cp34-cp34m-linux_x86_64.whl
If you encounter installation problems, see [Common Installation Problems](#common_installation_problems). @@ -299,7 +321,7 @@ take the following steps:
      $ sudo pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1-cp34-cp34m-linux_x86_64.whl
+     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0-cp34-cp34m-linux_x86_64.whl
      
If this step fails, see @@ -485,7 +507,7 @@ Take the following steps to install TensorFlow in an Anaconda environment:
      (tensorflow)$ pip install --ignore-installed --upgrade \
-     https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1-cp34-cp34m-linux_x86_64.whl
+ https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0-cp34-cp34m-linux_x86_64.whl ## Validate your installation @@ -659,14 +681,14 @@ This section documents the relevant values for Linux installations. CPU only:
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1-cp27-none-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0-cp27-none-linux_x86_64.whl
 
GPU support:
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1-cp27-none-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0-cp27-none-linux_x86_64.whl
 
Note that GPU support requires the NVIDIA hardware and software described in @@ -678,14 +700,14 @@ Note that GPU support requires the NVIDIA hardware and software described in CPU only:
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1-cp34-cp34m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0-cp34-cp34m-linux_x86_64.whl
 
GPU support:
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1-cp34-cp34m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0-cp34-cp34m-linux_x86_64.whl
 
Note that GPU support requires the NVIDIA hardware and software described in @@ -697,14 +719,14 @@ Note that GPU support requires the NVIDIA hardware and software described in CPU only:
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1-cp35-cp35m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0-cp35-cp35m-linux_x86_64.whl
 
GPU support:
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1-cp35-cp35m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0-cp35-cp35m-linux_x86_64.whl
 
@@ -716,14 +738,14 @@ Note that GPU support requires the NVIDIA hardware and software described in CPU only:
-https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0rc1-cp36-cp36m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.8.0-cp36-cp36m-linux_x86_64.whl
 
GPU support:
-https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0rc1-cp36-cp36m-linux_x86_64.whl
+https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.8.0-cp36-cp36m-linux_x86_64.whl
 
diff --git a/install/install_mac.md b/install/install_mac.md index ff6c2f5..c79075b 100644 --- a/install/install_mac.md +++ b/install/install_mac.md @@ -119,7 +119,7 @@ Take the following steps to install TensorFlow with Virtualenv: TensorFlow in the active Virtualenv is as follows:
 $ pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0rc1-py3-none-any.whl
+ https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0-py3-none-any.whl If you encounter installation problems, see [Common Installation Problems](#common-installation-problems). @@ -242,7 +242,7 @@ take the following steps: issue the following command:
 $ sudo pip3 install --upgrade \
-     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0rc1-py3-none-any.whl 
+ https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0-py3-none-any.whl If the preceding command fails, see [installation problems](#common-installation-problems). @@ -350,7 +350,7 @@ Take the following steps to install TensorFlow in an Anaconda environment: TensorFlow for Python 2.7:
 (targetDirectory)$ pip install --ignore-installed --upgrade \
-     https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0rc1-py2-none-any.whl
+ https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0-py2-none-any.whl @@ -524,7 +524,7 @@ The value you specify depends on your Python version.
-https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0rc1-py2-none-any.whl
+https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0-py2-none-any.whl
 
@@ -532,5 +532,5 @@ https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0rc1-py2-none-a
-https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0rc1-py3-none-any.whl
+https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.8.0-py3-none-any.whl
 
diff --git a/install/install_sources.md b/install/install_sources.md index d48a6ee..3d93736 100644 --- a/install/install_sources.md +++ b/install/install_sources.md @@ -350,10 +350,10 @@ Invoke `pip install` to install that pip package. The filename of the `.whl` file depends on your platform. For example, the following command will install the pip package -for TensorFlow 1.8.0rc1 on Linux: +for TensorFlow 1.8.0 on Linux:
-$ sudo pip install /tmp/tensorflow_pkg/tensorflow-1.8.0rc1-py2-none-any.whl
+$ sudo pip install /tmp/tensorflow_pkg/tensorflow-1.8.0-py2-none-any.whl
 
## Validate your installation