Skip to content

Commit cad93b5

Browse files
committed
finish cnn architecture
1 parent c0eb032 commit cad93b5

File tree

17 files changed

+1960
-640
lines changed

17 files changed

+1960
-640
lines changed

README.md

Lines changed: 15 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -28,23 +28,14 @@ Learn Deep Learning with PyTorch
2828
- [多层神经网络,Sequential 和 Module](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/nn-sequential-module.ipynb)
2929
- [深度神经网络](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/deep-nn.ipynb)
3030
- [参数初始化方法](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/param_initialize.ipynb)
31-
- 优化算法
32-
- [SGD](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/sgd.ipynb)
33-
- [动量法](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/momentum.ipynb)
34-
- [Adagrad](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adagrad.ipynb)
35-
- [RMSProp](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/rmsprop.ipynb)
36-
- [Adadelta](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adadelta.ipynb)
37-
- [Adam](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adam.ipynb)
38-
31+
3932
- Chapter 4: 卷积神经网络
40-
- PyTorch 中的卷积模块
41-
- 使用重复元素的深度网络,VGG
42-
- 更加丰富化结构的网络,GoogLeNet
43-
- 深度残差网络,ResNet
44-
- 稠密连接的卷积网络,DenseNet
45-
- 更好的训练卷积网络:数据增强、批标准化、dropout和正则化方法
46-
- 灵活的数据读取介绍
47-
- Fine-tuning: 通过微调进行迁移学习
33+
- [PyTorch 中的卷积模块](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter4_CNN/basic_conv.ipynb)
34+
- [使用重复元素的深度网络,VGG](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/vgg.ipynb)
35+
- [更加丰富化结构的网络,GoogLeNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/googlenet.ipynb)
36+
- [深度残差网络,ResNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/resnet.ipynb)
37+
- [稠密连接的卷积网络,DenseNet](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_CNN/densenet.ipynb)
38+
- 更好的训练卷积网络:数据增强、批标准化、dropout、正则化方法以及学习率衰减
4839

4940
- Chapter 5: 循环神经网络
5041
- LSTM 和 GRU
@@ -62,6 +53,13 @@ Learn Deep Learning with PyTorch
6253
- Chapter 7: PyTorch高级
6354
- tensorboard 可视化
6455
- 优化算法
56+
- [SGD](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/sgd.ipynb)
57+
- [动量法](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/momentum.ipynb)
58+
- [Adagrad](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adagrad.ipynb)
59+
- [RMSProp](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/rmsprop.ipynb)
60+
- [Adadelta](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adadelta.ipynb)
61+
- [Adam](https://github.com/SherlockLiao/code-of-learn-deep-learning-with-pytorch/blob/master/chapter3_NN/optimizer/adam.ipynb)
62+
- 灵活的数据读取介绍
6563
- autograd.function 的介绍
6664
- 数据并行和多 GPU
6765
- PyTorch 的分布式应用
@@ -70,14 +68,14 @@ Learn Deep Learning with PyTorch
7068

7169
### part2: 深度学习的应用
7270
- Chapter 8: 计算机视觉
73-
- 图像增强的方法
7471
- Fine-tuning: 通过微调进行迁移学习
7572
- 语义分割: 通过 FCN 实现像素级别的分类
7673
- Neural Transfer: 通过卷积网络实现风格迁移
7774
- Deep Dream: 探索卷积网络眼中的世界
7875

7976
- Chapter 9: 自然语言处理
8077
- char rnn 实现文本生成
78+
- Image Caption: 实现图片字幕生成
8179
- seq2seq 实现机器翻译
8280
- cnn+rnn+attention 实现文本识别
8381

chapter3_NN/deep-nn.ipynb

Lines changed: 63 additions & 63 deletions
Large diffs are not rendered by default.

chapter4_CNN/basic_conv.ipynb

Lines changed: 334 additions & 0 deletions
Large diffs are not rendered by default.

chapter4_CNN/cat.png

94.7 KB
Loading

chapter4_CNN/cifar10/main.py

Lines changed: 0 additions & 174 deletions
This file was deleted.

chapter4_CNN/convolution_network/alexnet.py

Lines changed: 0 additions & 34 deletions
This file was deleted.

chapter4_CNN/convolution_network/googlenet.py

Lines changed: 0 additions & 45 deletions
This file was deleted.

chapter4_CNN/convolution_network/lenet.py

Lines changed: 0 additions & 29 deletions
This file was deleted.

0 commit comments

Comments
 (0)