|
| 1 | +package leetcode |
| 2 | + |
| 3 | +import ( |
| 4 | + "math" |
| 5 | + "strings" |
| 6 | +) |
| 7 | + |
| 8 | +// 解法一 BFS,利用状态压缩来过滤筛选状态 |
| 9 | +func shortestPathAllKeys(grid []string) int { |
| 10 | + if len(grid) == 0 { |
| 11 | + return 0 |
| 12 | + } |
| 13 | + board, visited, startx, starty, res, fullKeys := make([][]byte, len(grid)), make([][][]bool, len(grid)), 0, 0, 0, 0 |
| 14 | + for i := 0; i < len(grid); i++ { |
| 15 | + board[i] = make([]byte, len(grid[0])) |
| 16 | + } |
| 17 | + for i, g := range grid { |
| 18 | + board[i] = []byte(g) |
| 19 | + for _, v := range g { |
| 20 | + if v == 'a' || v == 'b' || v == 'c' || v == 'd' || v == 'e' || v == 'f' { |
| 21 | + fullKeys |= (1 << uint(v-'a')) |
| 22 | + } |
| 23 | + } |
| 24 | + if strings.Contains(g, "@") { |
| 25 | + startx, starty = i, strings.Index(g, "@") |
| 26 | + } |
| 27 | + } |
| 28 | + for i := 0; i < len(visited); i++ { |
| 29 | + visited[i] = make([][]bool, len(board[0])) |
| 30 | + } |
| 31 | + for i := 0; i < len(board); i++ { |
| 32 | + for j := 0; j < len(board[0]); j++ { |
| 33 | + visited[i][j] = make([]bool, 64) |
| 34 | + } |
| 35 | + } |
| 36 | + queue := []int{} |
| 37 | + queue = append(queue, (starty<<16)|(startx<<8)) |
| 38 | + visited[startx][starty][0] = true |
| 39 | + for len(queue) != 0 { |
| 40 | + qLen := len(queue) |
| 41 | + for i := 0; i < qLen; i++ { |
| 42 | + state := queue[0] |
| 43 | + queue = queue[1:] |
| 44 | + starty, startx = state>>16, (state>>8)&0xFF |
| 45 | + keys := state & 0xFF |
| 46 | + if keys == fullKeys { |
| 47 | + return res |
| 48 | + } |
| 49 | + for i := 0; i < 4; i++ { |
| 50 | + newState := keys |
| 51 | + nx := startx + dir[i][0] |
| 52 | + ny := starty + dir[i][1] |
| 53 | + if !isInBoard(board, nx, ny) { |
| 54 | + continue |
| 55 | + } |
| 56 | + if board[nx][ny] == '#' { |
| 57 | + continue |
| 58 | + } |
| 59 | + flag, canThroughLock := keys&(1<<(board[nx][ny]-'A')), false |
| 60 | + if flag != 0 { |
| 61 | + canThroughLock = true |
| 62 | + } |
| 63 | + if isLock(board, nx, ny) && !canThroughLock { |
| 64 | + continue |
| 65 | + } |
| 66 | + if isKey(board, nx, ny) { |
| 67 | + newState |= (1 << (board[nx][ny] - 'a')) |
| 68 | + } |
| 69 | + if visited[nx][ny][newState] { |
| 70 | + continue |
| 71 | + } |
| 72 | + queue = append(queue, (ny<<16)|(nx<<8)|newState) |
| 73 | + visited[nx][ny][newState] = true |
| 74 | + } |
| 75 | + } |
| 76 | + res++ |
| 77 | + } |
| 78 | + return -1 |
| 79 | +} |
| 80 | + |
| 81 | +// 解法二 DFS,但是超时了,剪枝条件不够强 |
| 82 | +func shortestPathAllKeys1(grid []string) int { |
| 83 | + if len(grid) == 0 { |
| 84 | + return 0 |
| 85 | + } |
| 86 | + board, visited, startx, starty, res, fullKeys := make([][]byte, len(grid)), make([][][]bool, len(grid)), 0, 0, math.MaxInt64, 0 |
| 87 | + for i := 0; i < len(grid); i++ { |
| 88 | + board[i] = make([]byte, len(grid[0])) |
| 89 | + } |
| 90 | + for i, g := range grid { |
| 91 | + board[i] = []byte(g) |
| 92 | + for _, v := range g { |
| 93 | + if v == 'a' || v == 'b' || v == 'c' || v == 'd' || v == 'e' || v == 'f' { |
| 94 | + fullKeys |= (1 << uint(v-'a')) |
| 95 | + } |
| 96 | + } |
| 97 | + if strings.Contains(g, "@") { |
| 98 | + startx, starty = i, strings.Index(g, "@") |
| 99 | + } |
| 100 | + } |
| 101 | + for i := 0; i < len(visited); i++ { |
| 102 | + visited[i] = make([][]bool, len(board[0])) |
| 103 | + } |
| 104 | + for i := 0; i < len(board); i++ { |
| 105 | + for j := 0; j < len(board[0]); j++ { |
| 106 | + visited[i][j] = make([]bool, 64) |
| 107 | + } |
| 108 | + } |
| 109 | + searchKeys(board, &visited, fullKeys, 0, (starty<<16)|(startx<<8), &res, []int{}) |
| 110 | + if res == math.MaxInt64 { |
| 111 | + return -1 |
| 112 | + } |
| 113 | + return res - 1 |
| 114 | +} |
| 115 | + |
| 116 | +func searchKeys(board [][]byte, visited *[][][]bool, fullKeys, step, state int, res *int, path []int) { |
| 117 | + y, x := state>>16, (state>>8)&0xFF |
| 118 | + keys := state & 0xFF |
| 119 | + |
| 120 | + if keys == fullKeys { |
| 121 | + *res = min(*res, step) |
| 122 | + return |
| 123 | + } |
| 124 | + |
| 125 | + flag, canThroughLock := keys&(1<<(board[x][y]-'A')), false |
| 126 | + if flag != 0 { |
| 127 | + canThroughLock = true |
| 128 | + } |
| 129 | + newState := keys |
| 130 | + //fmt.Printf("x = %v y = %v fullKeys = %v keys = %v step = %v res = %v path = %v state = %v\n", x, y, fullKeys, keys, step, *res, path, state) |
| 131 | + if (board[x][y] != '#' && !isLock(board, x, y)) || (isLock(board, x, y) && canThroughLock) { |
| 132 | + if isKey(board, x, y) { |
| 133 | + newState |= (1 << uint(board[x][y]-'a')) |
| 134 | + } |
| 135 | + (*visited)[x][y][newState] = true |
| 136 | + path = append(path, x) |
| 137 | + path = append(path, y) |
| 138 | + |
| 139 | + for i := 0; i < 4; i++ { |
| 140 | + nx := x + dir[i][0] |
| 141 | + ny := y + dir[i][1] |
| 142 | + if isInBoard(board, nx, ny) && !(*visited)[nx][ny][newState] { |
| 143 | + searchKeys(board, visited, fullKeys, step+1, (ny<<16)|(nx<<8)|newState, res, path) |
| 144 | + } |
| 145 | + } |
| 146 | + (*visited)[x][y][keys] = false |
| 147 | + path = path[:len(path)-1] |
| 148 | + path = path[:len(path)-1] |
| 149 | + } |
| 150 | +} |
| 151 | + |
| 152 | +func isLock(board [][]byte, x, y int) bool { |
| 153 | + if (board[x][y] == 'A') || (board[x][y] == 'B') || |
| 154 | + (board[x][y] == 'C') || (board[x][y] == 'D') || |
| 155 | + (board[x][y] == 'E') || (board[x][y] == 'F') { |
| 156 | + return true |
| 157 | + } |
| 158 | + return false |
| 159 | +} |
| 160 | + |
| 161 | +func isKey(board [][]byte, x, y int) bool { |
| 162 | + if (board[x][y] == 'a') || (board[x][y] == 'b') || |
| 163 | + (board[x][y] == 'c') || (board[x][y] == 'd') || |
| 164 | + (board[x][y] == 'e') || (board[x][y] == 'f') { |
| 165 | + return true |
| 166 | + } |
| 167 | + return false |
| 168 | +} |
0 commit comments