|
| 1 | +# [684. Redundant Connection](https://leetcode.com/problems/redundant-connection/) |
| 2 | + |
| 3 | + |
| 4 | +## 题目: |
| 5 | + |
| 6 | +In this problem, a tree is an **undirected** graph that is connected and has no cycles. |
| 7 | + |
| 8 | +The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed. |
| 9 | + |
| 10 | +The resulting graph is given as a 2D-array of `edges`. Each element of `edges` is a pair `[u, v]` with `u < v`, that represents an **undirected** edge connecting nodes `u` and `v`. |
| 11 | + |
| 12 | +Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge `[u, v]` should be in the same format, with `u < v`. |
| 13 | + |
| 14 | +**Example 1:** |
| 15 | + |
| 16 | + Input: [[1,2], [1,3], [2,3]] |
| 17 | + Output: [2,3] |
| 18 | + Explanation: The given undirected graph will be like this: |
| 19 | + 1 |
| 20 | + / \ |
| 21 | + 2 - 3 |
| 22 | + |
| 23 | +**Example 2:** |
| 24 | + |
| 25 | + Input: [[1,2], [2,3], [3,4], [1,4], [1,5]] |
| 26 | + Output: [1,4] |
| 27 | + Explanation: The given undirected graph will be like this: |
| 28 | + 5 - 1 - 2 |
| 29 | + | | |
| 30 | + 4 - 3 |
| 31 | + |
| 32 | +**Note:** |
| 33 | + |
| 34 | +- The size of the input 2D-array will be between 3 and 1000. |
| 35 | +- Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array. |
| 36 | + |
| 37 | +**Update (2017-09-26):**We have overhauled the problem description + test cases and specified clearly the graph is an **undirected** graph. For the **directed** graph follow up please see **[Redundant Connection II](https://leetcode.com/problems/redundant-connection-ii/description/)**). We apologize for any inconvenience caused. |
| 38 | + |
| 39 | + |
| 40 | +## 题目大意 |
| 41 | + |
| 42 | +在本问题中, 树指的是一个连通且无环的无向图。输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。结果图是一个以边组成的二维数组。每一个边的元素是一对[u, v] ,满足 u < v,表示连接顶点u 和v的无向图的边。 |
| 43 | + |
| 44 | +返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v。 |
| 45 | + |
| 46 | +注意: |
| 47 | + |
| 48 | +- 输入的二维数组大小在 3 到 1000。 |
| 49 | +- 二维数组中的整数在 1 到 N 之间,其中 N 是输入数组的大小。 |
| 50 | + |
| 51 | + |
| 52 | +## 解题思路 |
| 53 | + |
| 54 | +- 给出一个连通无环无向图和一些连通的边,要求在这些边中删除一条边以后,图中的 N 个节点依旧是连通的。如果有多条边,输出最后一条。 |
| 55 | +- 这一题可以用并查集直接秒杀。依次扫描所有的边,把边的两端点都合并 `union()` 到一起。如果遇到一条边的两端点已经在一个集合里面了,就说明是多余边,删除。最后输出这些边即可。 |
0 commit comments