|
20 | 20 | }, |
21 | 21 | { |
22 | 22 | "cell_type": "code", |
23 | | - "execution_count": 2, |
| 23 | + "execution_count": 1, |
24 | 24 | "metadata": { |
25 | 25 | "cellView": "both", |
26 | 26 | "colab": { |
|
54 | 54 | }, |
55 | 55 | { |
56 | 56 | "cell_type": "code", |
57 | | - "execution_count": 3, |
| 57 | + "execution_count": 2, |
58 | 58 | "metadata": { |
59 | 59 | "cellView": "both", |
60 | 60 | "colab": { |
|
131 | 131 | }, |
132 | 132 | { |
133 | 133 | "cell_type": "code", |
134 | | - "execution_count": 4, |
| 134 | + "execution_count": 3, |
135 | 135 | "metadata": { |
136 | 136 | "cellView": "both", |
137 | 137 | "colab": { |
|
196 | 196 | }, |
197 | 197 | { |
198 | 198 | "cell_type": "code", |
199 | | - "execution_count": 5, |
| 199 | + "execution_count": 4, |
200 | 200 | "metadata": { |
201 | 201 | "cellView": "both", |
202 | 202 | "colab": { |
|
589 | 589 | "cell_type": "code", |
590 | 590 | "execution_count": 12, |
591 | 591 | "metadata": { |
592 | | - "collapsed": false |
| 592 | + "collapsed": false, |
| 593 | + "scrolled": false |
593 | 594 | }, |
594 | 595 | "outputs": [ |
595 | 596 | { |
596 | 597 | "name": "stdout", |
597 | 598 | "output_type": "stream", |
598 | 599 | "text": [ |
599 | 600 | "Initialized\n", |
600 | | - "Minibatch loss at step 0 : 34718.1\n", |
601 | | - "Minibatch accuracy: 15.6%\n", |
602 | | - "Validation accuracy: 9.4%\n", |
603 | | - "Minibatch loss at step 1000 : 2.31229\n", |
604 | | - "Minibatch accuracy: 10.9%\n", |
605 | | - "Validation accuracy: 10.4%\n", |
606 | | - "Minibatch loss at step 2000 : 2.3071\n", |
607 | | - "Minibatch accuracy: 9.4%\n", |
608 | | - "Validation accuracy: 10.4%\n", |
609 | | - "Minibatch loss at step 3000 : 2.29897\n", |
610 | | - "Minibatch accuracy: 12.5%\n", |
611 | | - "Validation accuracy: 10.4%\n", |
612 | | - "Minibatch loss at step 4000 : 2.30373\n", |
613 | | - "Minibatch accuracy: 7.0%\n", |
614 | | - "Validation accuracy: 10.4%\n", |
615 | | - "Minibatch loss at step 5000 : 2.30152\n", |
| 601 | + "Minibatch loss at step 0 : 58.3308\n", |
616 | 602 | "Minibatch accuracy: 9.4%\n", |
617 | | - "Validation accuracy: 10.4%\n", |
618 | | - "Minibatch loss at step 6000 : 2.30267\n", |
619 | | - "Minibatch accuracy: 12.5%\n", |
620 | | - "Validation accuracy: 10.1%\n", |
621 | | - "Minibatch loss at step 7000 : 2.30219\n", |
622 | | - "Minibatch accuracy: 15.6%\n", |
623 | | - "Validation accuracy: 10.4%\n", |
624 | | - "Minibatch loss at step 8000 : 2.3031\n", |
625 | | - "Minibatch accuracy: 10.9%\n", |
626 | | - "Validation accuracy: 10.1%\n", |
627 | | - "Minibatch loss at step 9000 : 2.30252\n", |
628 | | - "Minibatch accuracy: 7.8%\n", |
629 | | - "Validation accuracy: 10.4%\n", |
630 | | - "Minibatch loss at step 10000 : 2.30177\n", |
631 | | - "Minibatch accuracy: 10.2%\n", |
632 | | - "Validation accuracy: 9.8%\n", |
633 | | - "Minibatch loss at step 11000 : 2.30296\n", |
634 | | - "Minibatch accuracy: 10.2%\n", |
635 | | - "Validation accuracy: 10.4%\n", |
636 | | - "Minibatch loss at step 12000 : 2.30295\n", |
637 | | - "Minibatch accuracy: 10.9%\n", |
638 | | - "Validation accuracy: 9.8%\n" |
639 | | - ] |
640 | | - }, |
641 | | - { |
642 | | - "ename": "KeyboardInterrupt", |
643 | | - "evalue": "", |
644 | | - "output_type": "error", |
645 | | - "traceback": [ |
646 | | - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", |
647 | | - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
648 | | - "\u001b[1;32m<ipython-input-12-6e5cff3f9f17>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 73\u001b[0m \u001b[0mfeed_dict\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m{\u001b[0m\u001b[0mtf_train_dataset\u001b[0m \u001b[1;33m:\u001b[0m \u001b[0mbatch_data\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtf_train_labels\u001b[0m \u001b[1;33m:\u001b[0m \u001b[0mbatch_labels\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 74\u001b[0m _, l, predictions = session.run(\n\u001b[1;32m---> 75\u001b[1;33m [optimizer, loss, train_prediction], feed_dict=feed_dict)\n\u001b[0m\u001b[0;32m 76\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mstep\u001b[0m \u001b[1;33m%\u001b[0m \u001b[1;36m1000\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 77\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[1;34m\"Minibatch loss at step\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstep\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\":\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0ml\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
649 | | - "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36mrun\u001b[1;34m(self, fetches, feed_dict)\u001b[0m\n\u001b[0;32m 383\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 384\u001b[0m \u001b[1;31m# Run request and get response.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 385\u001b[1;33m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_do_run\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtarget_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0munique_fetch_targets\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeed_dict_string\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 386\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 387\u001b[0m \u001b[1;31m# User may have fetched the same tensor multiple times, but we\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
650 | | - "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc\u001b[0m in \u001b[0;36m_do_run\u001b[1;34m(self, target_list, fetch_list, feed_dict)\u001b[0m\n\u001b[0;32m 443\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 444\u001b[0m return tf_session.TF_Run(self._session, feed_dict, fetch_list,\n\u001b[1;32m--> 445\u001b[1;33m target_list)\n\u001b[0m\u001b[0;32m 446\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 447\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mStatusNotOK\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", |
651 | | - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " |
| 603 | + "Validation accuracy: 11.2%\n", |
| 604 | + "Minibatch loss at step 1000 : 2.46086\n", |
| 605 | + "Minibatch accuracy: 23.4%\n", |
| 606 | + "Validation accuracy: 37.1%\n", |
| 607 | + "Minibatch loss at step 2000 : 1.79268\n", |
| 608 | + "Minibatch accuracy: 35.9%\n", |
| 609 | + "Validation accuracy: 49.8%\n", |
| 610 | + "Minibatch loss at step 3000 : 1.76012\n", |
| 611 | + "Minibatch accuracy: 44.5%\n", |
| 612 | + "Validation accuracy: 56.3%\n", |
| 613 | + "Minibatch loss at step 4000 : 1.49048\n", |
| 614 | + "Minibatch accuracy: 50.0%\n", |
| 615 | + "Validation accuracy: 60.7%\n", |
| 616 | + "Minibatch loss at step 5000 : 1.35661\n", |
| 617 | + "Minibatch accuracy: 53.1%\n", |
| 618 | + "Validation accuracy: 64.0%\n", |
| 619 | + "Minibatch loss at step 6000 : 1.53\n", |
| 620 | + "Minibatch accuracy: 50.0%\n", |
| 621 | + "Validation accuracy: 66.7%\n", |
| 622 | + "Minibatch loss at step 7000 : 1.16328\n", |
| 623 | + "Minibatch accuracy: 63.3%\n", |
| 624 | + "Validation accuracy: 69.6%\n", |
| 625 | + "Minibatch loss at step 8000 : 1.34582\n", |
| 626 | + "Minibatch accuracy: 63.3%\n", |
| 627 | + "Validation accuracy: 70.1%\n", |
| 628 | + "Minibatch loss at step 9000 : 1.13307\n", |
| 629 | + "Minibatch accuracy: 60.2%\n", |
| 630 | + "Validation accuracy: 72.8%\n", |
| 631 | + "Minibatch loss at step 10000 : 1.1888\n", |
| 632 | + "Minibatch accuracy: 63.3%\n", |
| 633 | + "Validation accuracy: 73.5%\n", |
| 634 | + "Minibatch loss at step 11000 : 1.30667\n", |
| 635 | + "Minibatch accuracy: 54.7%\n", |
| 636 | + "Validation accuracy: 75.2%\n", |
| 637 | + "Minibatch loss at step 12000 : 1.19186\n", |
| 638 | + "Minibatch accuracy: 65.6%\n", |
| 639 | + "Validation accuracy: 76.1%\n", |
| 640 | + "Minibatch loss at step 13000 : 1.23864\n", |
| 641 | + "Minibatch accuracy: 64.8%\n", |
| 642 | + "Validation accuracy: 76.9%\n", |
| 643 | + "Minibatch loss at step 14000 : 1.00669\n", |
| 644 | + "Minibatch accuracy: 69.5%\n", |
| 645 | + "Validation accuracy: 77.0%\n", |
| 646 | + "Minibatch loss at step 15000 : 0.854794\n", |
| 647 | + "Minibatch accuracy: 72.7%\n", |
| 648 | + "Validation accuracy: 77.7%\n", |
| 649 | + "Minibatch loss at step 16000 : 0.820268\n", |
| 650 | + "Minibatch accuracy: 78.9%\n", |
| 651 | + "Validation accuracy: 78.0%\n", |
| 652 | + "Minibatch loss at step 17000 : 0.841344\n", |
| 653 | + "Minibatch accuracy: 74.2%\n", |
| 654 | + "Validation accuracy: 78.8%\n", |
| 655 | + "Minibatch loss at step 18000 : 0.783495\n", |
| 656 | + "Minibatch accuracy: 77.3%\n", |
| 657 | + "Validation accuracy: 78.8%\n", |
| 658 | + "Minibatch loss at step 19000 : 0.999198\n", |
| 659 | + "Minibatch accuracy: 71.1%\n", |
| 660 | + "Validation accuracy: 79.2%\n", |
| 661 | + "Minibatch loss at step 20000 : 0.834015\n", |
| 662 | + "Minibatch accuracy: 72.7%\n", |
| 663 | + "Validation accuracy: 79.7%\n", |
| 664 | + "Minibatch loss at step 21000 : 0.929157\n", |
| 665 | + "Minibatch accuracy: 71.9%\n", |
| 666 | + "Validation accuracy: 79.8%\n", |
| 667 | + "Minibatch loss at step 22000 : 0.705838\n", |
| 668 | + "Minibatch accuracy: 77.3%\n", |
| 669 | + "Validation accuracy: 80.4%\n", |
| 670 | + "Minibatch loss at step 23000 : 0.806978\n", |
| 671 | + "Minibatch accuracy: 73.4%\n", |
| 672 | + "Validation accuracy: 80.6%\n", |
| 673 | + "Minibatch loss at step 24000 : 0.700855\n", |
| 674 | + "Minibatch accuracy: 78.1%\n", |
| 675 | + "Validation accuracy: 80.8%\n", |
| 676 | + "Minibatch loss at step 25000 : 0.850926\n", |
| 677 | + "Minibatch accuracy: 76.6%\n", |
| 678 | + "Validation accuracy: 80.8%\n", |
| 679 | + "Minibatch loss at step 26000 : 0.92411\n", |
| 680 | + "Minibatch accuracy: 71.9%\n", |
| 681 | + "Validation accuracy: 81.1%\n", |
| 682 | + "Minibatch loss at step 27000 : 0.870534\n", |
| 683 | + "Minibatch accuracy: 73.4%\n", |
| 684 | + "Validation accuracy: 81.2%\n", |
| 685 | + "Minibatch loss at step 28000 : 0.655592\n", |
| 686 | + "Minibatch accuracy: 79.7%\n", |
| 687 | + "Validation accuracy: 81.5%\n", |
| 688 | + "Minibatch loss at step 29000 : 0.650673\n", |
| 689 | + "Minibatch accuracy: 79.7%\n", |
| 690 | + "Validation accuracy: 81.7%\n", |
| 691 | + "Minibatch loss at step 30000 : 0.575677\n", |
| 692 | + "Minibatch accuracy: 79.7%\n", |
| 693 | + "Validation accuracy: 81.9%\n", |
| 694 | + "Minibatch loss at step 31000 : 0.754482\n", |
| 695 | + "Minibatch accuracy: 77.3%\n", |
| 696 | + "Validation accuracy: 81.6%\n", |
| 697 | + "Minibatch loss at step 32000 : 0.647639\n", |
| 698 | + "Minibatch accuracy: 80.5%\n", |
| 699 | + "Validation accuracy: 82.2%\n", |
| 700 | + "Minibatch loss at step 33000 : 0.6582\n", |
| 701 | + "Minibatch accuracy: 80.5%\n", |
| 702 | + "Validation accuracy: 82.4%\n", |
| 703 | + "Minibatch loss at step 34000 : 0.517049\n", |
| 704 | + "Minibatch accuracy: 85.2%\n", |
| 705 | + "Validation accuracy: 82.3%\n", |
| 706 | + "Minibatch loss at step 35000 : 0.555218\n", |
| 707 | + "Minibatch accuracy: 83.6%\n", |
| 708 | + "Validation accuracy: 82.5%\n", |
| 709 | + "Minibatch loss at step 36000 : 0.674287\n", |
| 710 | + "Minibatch accuracy: 82.0%\n", |
| 711 | + "Validation accuracy: 82.6%\n", |
| 712 | + "Minibatch loss at step 37000 : 0.54334\n", |
| 713 | + "Minibatch accuracy: 85.2%\n", |
| 714 | + "Validation accuracy: 82.7%\n", |
| 715 | + "Minibatch loss at step 38000 : 0.626048\n", |
| 716 | + "Minibatch accuracy: 79.7%\n", |
| 717 | + "Validation accuracy: 82.9%\n", |
| 718 | + "Minibatch loss at step 39000 : 0.651072\n", |
| 719 | + "Minibatch accuracy: 77.3%\n", |
| 720 | + "Validation accuracy: 83.0%\n", |
| 721 | + "Minibatch loss at step 40000 : 0.625448\n", |
| 722 | + "Minibatch accuracy: 84.4%\n", |
| 723 | + "Validation accuracy: 83.2%\n", |
| 724 | + "Minibatch loss at step 41000 : 0.689314\n", |
| 725 | + "Minibatch accuracy: 77.3%\n", |
| 726 | + "Validation accuracy: 83.3%\n", |
| 727 | + "Minibatch loss at step 42000 : 0.657324\n", |
| 728 | + "Minibatch accuracy: 80.5%\n", |
| 729 | + "Validation accuracy: 83.3%\n", |
| 730 | + "Minibatch loss at step 43000 : 0.774549\n", |
| 731 | + "Minibatch accuracy: 75.0%\n", |
| 732 | + "Validation accuracy: 83.3%\n", |
| 733 | + "Minibatch loss at step 44000 : 0.592654\n", |
| 734 | + "Minibatch accuracy: 83.6%\n", |
| 735 | + "Validation accuracy: 83.7%\n", |
| 736 | + "Minibatch loss at step 45000 : 0.635808\n", |
| 737 | + "Minibatch accuracy: 78.1%\n", |
| 738 | + "Validation accuracy: 83.8%\n", |
| 739 | + "Minibatch loss at step 46000 : 0.401504\n", |
| 740 | + "Minibatch accuracy: 86.7%\n", |
| 741 | + "Validation accuracy: 83.6%\n", |
| 742 | + "Minibatch loss at step 47000 : 0.561845\n", |
| 743 | + "Minibatch accuracy: 81.2%\n", |
| 744 | + "Validation accuracy: 83.7%\n", |
| 745 | + "Minibatch loss at step 48000 : 0.55333\n", |
| 746 | + "Minibatch accuracy: 80.5%\n", |
| 747 | + "Validation accuracy: 83.8%\n", |
| 748 | + "Minibatch loss at step 49000 : 0.649688\n", |
| 749 | + "Minibatch accuracy: 81.2%\n", |
| 750 | + "Validation accuracy: 84.0%\n", |
| 751 | + "Minibatch loss at step 50000 : 0.565368\n", |
| 752 | + "Minibatch accuracy: 82.8%\n", |
| 753 | + "Validation accuracy: 84.0%\n", |
| 754 | + "Minibatch loss at step 51000 : 0.391173\n", |
| 755 | + "Minibatch accuracy: 89.1%\n", |
| 756 | + "Validation accuracy: 84.1%\n", |
| 757 | + "Minibatch loss at step 52000 : 0.459594\n", |
| 758 | + "Minibatch accuracy: 85.9%\n", |
| 759 | + "Validation accuracy: 84.1%\n", |
| 760 | + "Minibatch loss at step 53000 : 0.576485\n", |
| 761 | + "Minibatch accuracy: 78.1%\n", |
| 762 | + "Validation accuracy: 84.3%\n", |
| 763 | + "Minibatch loss at step 54000 : 0.572356\n", |
| 764 | + "Minibatch accuracy: 85.2%\n", |
| 765 | + "Validation accuracy: 84.3%\n", |
| 766 | + "Minibatch loss at step 55000 : 0.581976\n", |
| 767 | + "Minibatch accuracy: 82.8%\n", |
| 768 | + "Validation accuracy: 84.4%\n", |
| 769 | + "Minibatch loss at step 56000 : 0.526539\n", |
| 770 | + "Minibatch accuracy: 83.6%\n", |
| 771 | + "Validation accuracy: 84.5%\n", |
| 772 | + "Minibatch loss at step 57000 : 0.366597\n", |
| 773 | + "Minibatch accuracy: 88.3%\n", |
| 774 | + "Validation accuracy: 84.4%\n", |
| 775 | + "Minibatch loss at step 58000 : 0.413548\n", |
| 776 | + "Minibatch accuracy: 85.9%\n", |
| 777 | + "Validation accuracy: 84.5%\n", |
| 778 | + "Minibatch loss at step 59000 : 0.522779\n", |
| 779 | + "Minibatch accuracy: 84.4%\n", |
| 780 | + "Validation accuracy: 84.6%\n", |
| 781 | + "Minibatch loss at step 60000 : 0.474158\n", |
| 782 | + "Minibatch accuracy: 88.3%\n", |
| 783 | + "Validation accuracy: 84.7%\n", |
| 784 | + "Minibatch loss at step 61000 : 0.493542\n", |
| 785 | + "Minibatch accuracy: 85.9%\n", |
| 786 | + "Validation accuracy: 84.6%\n", |
| 787 | + "Minibatch loss at step 62000 : 0.655646\n", |
| 788 | + "Minibatch accuracy: 79.7%\n", |
| 789 | + "Validation accuracy: 84.8%\n", |
| 790 | + "Minibatch loss at step 63000 : 0.410069\n", |
| 791 | + "Minibatch accuracy: 85.9%\n", |
| 792 | + "Validation accuracy: 84.9%\n", |
| 793 | + "Minibatch loss at step 64000 : 0.577193\n", |
| 794 | + "Minibatch accuracy: 80.5%\n", |
| 795 | + "Validation accuracy: 84.9%\n", |
| 796 | + "Test accuracy: 91.6%\n" |
652 | 797 | ] |
653 | 798 | } |
654 | 799 | ], |
655 | 800 | "source": [ |
656 | 801 | "num_steps = 64001\n", |
657 | 802 | "batch_size = 128\n", |
658 | | - "hidden_size_1 = 1024\n", |
659 | | - "hidden_size_2 = 300\n", |
660 | | - "hidden_size_3 = 50\n", |
| 803 | + "hidden_size_1 = 256\n", |
| 804 | + "hidden_size_2 = 128\n", |
| 805 | + "hidden_size_3 = 64\n", |
661 | 806 | "reg_term=0.001\n", |
662 | 807 | "keep_prob=0.8\n", |
663 | 808 | "\n", |
|
683 | 828 | "\n", |
684 | 829 | " # Training computation.\n", |
685 | 830 | " def multi_layer_logit(input_dataset, keep_prob=keep_prob):\n", |
686 | | - " hidden_1 = tf.nn.dropout(tf.nn.relu(tf.matmul(input_dataset, weights_h_1) + biases_h_1), keep_prob)\n", |
687 | | - " hidden_2 = tf.nn.dropout(tf.nn.relu(tf.matmul(hidden_1, weights_h_2) + biases_h_2), keep_prob)\n", |
688 | | - " hidden_3 = tf.nn.dropout(tf.nn.relu(tf.matmul(hidden_2, weights_h_3) + biases_h_3), keep_prob) \n", |
| 831 | + " hidden_1 = tf.nn.dropout(tf.nn.relu6(tf.matmul(input_dataset, weights_h_1) + biases_h_1), keep_prob)\n", |
| 832 | + " hidden_2 = tf.nn.dropout(tf.nn.relu6(tf.matmul(hidden_1, weights_h_2) + biases_h_2), keep_prob)\n", |
| 833 | + " hidden_3 = tf.nn.dropout(tf.nn.relu6(tf.matmul(hidden_2, weights_h_3) + biases_h_3), keep_prob) \n", |
689 | 834 | "\n", |
690 | 835 | " logits = tf.matmul(hidden_3, weights_y) + biases_y\n", |
691 | 836 | " return logits\n", |
692 | 837 | "\n", |
693 | | - " logits = multi_layer_logit(tf_train_dataset, keep_prob=0.5)\n", |
694 | | - " epsilon = 1e-9\n", |
| 838 | + " logits = multi_layer_logit(tf_train_dataset, keep_prob=keep_prob)\n", |
695 | 839 | " loss = tf.reduce_mean(\n", |
696 | | - " tf.nn.softmax_cross_entropy_with_logits(logits + epsilon, tf_train_labels))\n", |
| 840 | + " tf.nn.softmax_cross_entropy_with_logits(logits + 1e-12, tf_train_labels))\n", |
697 | 841 | " \n", |
698 | 842 | " loss_with_reg = loss + reg_term * (\n", |
699 | 843 | " tf.nn.l2_loss(weights_h_1) +\n", |
|
704 | 848 | "\n", |
705 | 849 | " # Optimizer.\n", |
706 | 850 | " global_step = tf.Variable(0)\n", |
707 | | - " learning_rate = tf.train.exponential_decay(0.01, global_step, 10000, 0.95)\n", |
| 851 | + " learning_rate = tf.train.exponential_decay(0.05, global_step, 1000, 0.98)\n", |
708 | 852 | " optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_with_reg, global_step=global_step)\n", |
709 | 853 | "\n", |
710 | 854 | " # Predictions for the training, validation, and test data.\n", |
|
0 commit comments