You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: tensorflow/core/ops/ops.pbtxt
+4-4Lines changed: 4 additions & 4 deletions
Original file line number
Diff line number
Diff line change
@@ -1712,7 +1712,7 @@ op {
1712
1712
}
1713
1713
}
1714
1714
summary:"Computes a 2-D convolution given 4-D `input` and `filter` tensors."
1715
-
description:"Given an input tensor of shape `[batch, in_height, in_width, in_channels]`\nand a filter / kernel tensor of shape\n`[filter_height, filter_width, in_channels, out_channels]`, this op\nperforms the following:\n\n1. Flattens the filter to a 2-D matrix with shape\n `[filter_height * filter_width * in_channels, output_channels]`.\n2. Extracts image patches from the the input tensor to form a *virtual*\n tensor of shape `[batch, out_height, out_width,\n filter_height * filter_width * in_channels]`.\n3. For each patch, right-multiplies the filter matrix and the image patch\n vector.\n\nIn detail,\n\n output[b, i, j, k] =\n sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *\n filter[di, dj, q, k]\n\nMust have `strides[0] = strides[3] = 1`. For the most common case of the same\nhorizontal and vertices strides, `strides = [1, stride, stride, 1]`."
1715
+
description:"Given an input tensor of shape `[batch, in_height, in_width, in_channels]`\nand a filter / kernel tensor of shape\n`[filter_height, filter_width, in_channels, out_channels]`, this op\nperforms the following:\n\n1. Flattens the filter to a 2-D matrix with shape\n `[filter_height * filter_width * in_channels, output_channels]`.\n2. Extracts image patches from the input tensor to form a *virtual*\n tensor of shape `[batch, out_height, out_width,\n filter_height * filter_width * in_channels]`.\n3. For each patch, right-multiplies the filter matrix and the image patch\n vector.\n\nIn detail,\n\n output[b, i, j, k] =\n sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *\n filter[di, dj, q, k]\n\nMust have `strides[0] = strides[3] = 1`. For the most common case of the same\nhorizontal and vertices strides, `strides = [1, stride, stride, 1]`."
1716
1716
}
1717
1717
op {
1718
1718
name:"Conv2DBackpropFilter"
@@ -4782,7 +4782,7 @@ op {
4782
4782
attr {
4783
4783
name:"num_negative_samples"
4784
4784
type:"int"
4785
-
description:"Number of negative samples per exaple."
4785
+
description:"Number of negative samples per example."
4786
4786
}
4787
4787
summary:"Training via negative sampling."
4788
4788
}
@@ -5029,7 +5029,7 @@ op {
5029
5029
attr {
5030
5030
name:"dense_shapes"
5031
5031
type:"list(shape)"
5032
-
description:"A list of Ndense shapes; the shapes of data in each Feature\ngiven in dense_keys.\nThe number of elements in the Feature corresponding to dense_key[j]\nmust always equal dense_shapes[j].NumEntries().\nIf dense_shapes[j] == (D0, D1, ..., DN) then the the shape of output\nTensor dense_values[j] will be (|serialized|, D0, D1, ..., DN):\nThe dense outputs are just the inputs row-stacked by batch."
5032
+
description:"A list of Ndense shapes; the shapes of data in each Feature\ngiven in dense_keys.\nThe number of elements in the Feature corresponding to dense_key[j]\nmust always equal dense_shapes[j].NumEntries().\nIf dense_shapes[j] == (D0, D1, ..., DN) then the shape of output\nTensor dense_values[j] will be (|serialized|, D0, D1, ..., DN):\nThe dense outputs are just the inputs row-stacked by batch."
5033
5033
has_minimum:true
5034
5034
}
5035
5035
summary:"Transforms a vector of brain.Example protos (as strings) into typed tensors."
@@ -8852,7 +8852,7 @@ op {
8852
8852
attr {
8853
8853
name:"f"
8854
8854
type:"func"
8855
-
description:"The function we want to compute the gradient for.\n\nThe function \'f\' must be a numerical function which takes N inputs and\nproduces M outputs. Its gradient function \'g\', which is computed by\nthis SymbolicGradient op is a function taking N + M inputs and\nproduces N outputs.\n\nI.e. if we have\n (y1, y2, ..., y_M) = f(x1, x2, ..., x_N),\nthen, g is\n (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,\n dL/dy1, dL/dy2, ..., dL/dy_M),\n\nwhere L is a scalar-value function of (x1, x2, ..., xN) (e.g., the\nloss function). dL/dx_i is the the partial derivative of L with respect\nto x_i.\n\n(Needs some math expert to say the comment above better.)"
8855
+
description:"The function we want to compute the gradient for.\n\nThe function \'f\' must be a numerical function which takes N inputs and\nproduces M outputs. Its gradient function \'g\', which is computed by\nthis SymbolicGradient op is a function taking N + M inputs and\nproduces N outputs.\n\nI.e. if we have\n (y1, y2, ..., y_M) = f(x1, x2, ..., x_N),\nthen, g is\n (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,\n dL/dy1, dL/dy2, ..., dL/dy_M),\n\nwhere L is a scalar-value function of (x1, x2, ..., xN) (e.g., the\nloss function). dL/dx_i is the partial derivative of L with respect\nto x_i.\n\n(Needs some math expert to say the comment above better.)"
8856
8856
}
8857
8857
summary:"Computes the gradient function for function f via backpropagation."
0 commit comments