|
| 1 | +# reference: https://en.wikipedia.org/wiki/Discounted_cumulative_gain |
| 2 | +import sys |
| 3 | +import math |
| 4 | + |
| 5 | + |
| 6 | +def nDCG( scores ): |
| 7 | + ''' |
| 8 | + calculate nDCG@k |
| 9 | + ''' |
| 10 | + DCGk = 0 |
| 11 | + for i, score in enumerate(scores): |
| 12 | + DCGk += (( 2**score - 1 ) / math.log( i+2, 2 )) |
| 13 | + IDCGk = sum( [ (2**x-1)/math.log(i+2, 2) for i, x in enumerate(sorted(scores, reverse=True)) ] ) |
| 14 | + |
| 15 | + return DCGk/IDCGk |
| 16 | + |
| 17 | + |
| 18 | + |
| 19 | + |
| 20 | +if __name__=="__main__": |
| 21 | + |
| 22 | + finput = sys.argv[1] |
| 23 | + k = int(sys.argv[2]) |
| 24 | + ''' |
| 25 | + finput is in the format of: |
| 26 | + query \t sku \t score \t pos |
| 27 | + here k is the value of p in wiki page |
| 28 | + ''' |
| 29 | + |
| 30 | + fin = open(finput, 'r') |
| 31 | + out = [] |
| 32 | + last_query, scores = '', [] |
| 33 | + for line in fin: |
| 34 | + try: |
| 35 | + if len(line.strip().split('\t'))==5: |
| 36 | + query, sku, score, pos, cos = line.strip().split('\t') |
| 37 | + else: |
| 38 | + query, sku, score, pos = line.strip().split('\t') |
| 39 | + except: |
| 40 | + print line.strip() |
| 41 | + if query == last_query: |
| 42 | + scores.append(int(score)) |
| 43 | + else: |
| 44 | + scores = scores[:k] |
| 45 | + #if len(set(scores)) <= 1: |
| 46 | + if not any(scores): |
| 47 | + last_query, scores = query, [ int(score) ] |
| 48 | + continue |
| 49 | + out.append( (last_query, nDCG(scores) ) ) |
| 50 | + last_query, scores = query, [ int(score) ] |
| 51 | + if query == last_query: |
| 52 | + scores = scores[:k] |
| 53 | + out.append( (last_query, nDCG(scores)) ) |
| 54 | + |
| 55 | + |
| 56 | + for tuple in out: |
| 57 | + print "nDCG of {} is {}".format( tuple[0], tuple[1] ) |
| 58 | + if out: |
| 59 | + print "Average is {}".format( sum([ x[1] for x in out])/len(out) ) |
0 commit comments