A minimal implementation of chunked, compressed, N-dimensional arrays for Python.
- Source code: https://github.com/alimanfoo/zarr
- Download: https://pypi.python.org/pypi/zarr
- Release notes: https://github.com/alimanfoo/zarr/releases
Installation requires Numpy and Cython pre-installed. Can only be installed on Linux currently.
Install from PyPI:
$ pip install -U zarr
Install from GitHub:
$ pip install -U git+https://github.com/alimanfoo/zarr.git@master
Experimental, proof-of-concept. This is alpha-quality software. Things may break, change or disappear without warning.
Bug reports and suggestions welcome.
- Chunking in multiple dimensions
- Resize any dimension
- Concurrent reads
- Concurrent writes
- Release the GIL during compression and decompression
Create an array:
>>> import numpy as np >>> import zarr >>> z = zarr.empty(shape=(10000, 1000), dtype='i4', chunks=(1000, 100)) >>> z zarr.ext.SynchronizedArray((10000, 1000), int32, chunks=(1000, 100)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 38.1M; cbytes: 0; initialized: 0/100
Fill it with some data:
>>> z[:] = np.arange(10000000, dtype='i4').reshape(10000, 1000) >>> z zarr.ext.SynchronizedArray((10000, 1000), int32, chunks=(1000, 100)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 38.1M; cbytes: 2.0M; ratio: 19.3; initialized: 100/100
Obtain a NumPy array by slicing:
>>> z[:]
array([[ 0, 1, 2, ..., 997, 998, 999],
[ 1000, 1001, 1002, ..., 1997, 1998, 1999],
[ 2000, 2001, 2002, ..., 2997, 2998, 2999],
...,
[9997000, 9997001, 9997002, ..., 9997997, 9997998, 9997999],
[9998000, 9998001, 9998002, ..., 9998997, 9998998, 9998999],
[9999000, 9999001, 9999002, ..., 9999997, 9999998, 9999999]], dtype=int32)
>>> z[:100]
array([[ 0, 1, 2, ..., 997, 998, 999],
[ 1000, 1001, 1002, ..., 1997, 1998, 1999],
[ 2000, 2001, 2002, ..., 2997, 2998, 2999],
...,
[97000, 97001, 97002, ..., 97997, 97998, 97999],
[98000, 98001, 98002, ..., 98997, 98998, 98999],
[99000, 99001, 99002, ..., 99997, 99998, 99999]], dtype=int32)
>>> z[:, :100]
array([[ 0, 1, 2, ..., 97, 98, 99],
[ 1000, 1001, 1002, ..., 1097, 1098, 1099],
[ 2000, 2001, 2002, ..., 2097, 2098, 2099],
...,
[9997000, 9997001, 9997002, ..., 9997097, 9997098, 9997099],
[9998000, 9998001, 9998002, ..., 9998097, 9998098, 9998099],
[9999000, 9999001, 9999002, ..., 9999097, 9999098, 9999099]], dtype=int32)
Resize the array and add more data:
>>> z.resize(20000, 1000) >>> z zarr.ext.SynchronizedArray((20000, 1000), int32, chunks=(1000, 100)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 76.3M; cbytes: 2.0M; ratio: 38.5; initialized: 100/200 >>> z[10000:, :] = np.arange(10000000, dtype='i4').reshape(10000, 1000) >>> z zarr.ext.SynchronizedArray((20000, 1000), int32, chunks=(1000, 100)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 76.3M; cbytes: 4.0M; ratio: 19.3; initialized: 200/200
For convenience, an append() method is also available, which can be used to
append data to any axis:
>>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000) >>> z = zarr.array(a, chunks=(1000, 100)) >>> z.append(a+a) >>> z zarr.ext.SynchronizedArray((20000, 1000), int32, chunks=(1000, 100)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 76.3M; cbytes: 3.6M; ratio: 21.2; initialized: 200/200 >>> z.append(np.vstack([a, a]), axis=1) >>> z zarr.ext.SynchronizedArray((20000, 2000), int32, chunks=(1000, 100)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 152.6M; cbytes: 7.6M; ratio: 20.2; initialized: 400/400
Create a persistent array (data stored on disk):
>>> path = 'example.zarr' >>> z = zarr.open(path, mode='w', shape=(10000, 1000), dtype='i4', chunks=(1000, 100)) >>> z[:] = np.arange(10000000, dtype='i4').reshape(10000, 1000) >>> z zarr.ext.SynchronizedPersistentArray((10000, 1000), int32, chunks=(1000, 100)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 38.1M; cbytes: 2.0M; ratio: 19.3; initialized: 100/100 mode: w; path: example.zarr
There is no need to close a persistent array. Data are automatically flushed to disk.
If you're working with really big arrays, try the 'lazy' option:
>>> path = 'big.zarr' >>> z = zarr.open(path, mode='w', shape=(1e8, 1e7), dtype='i4', chunks=(1000, 1000), lazy=True) >>> z zarr.ext.SynchronizedLazyPersistentArray((100000000, 10000000), int32, chunks=(1000, 1000)) cname: blosclz; clevel: 5; shuffle: 1 (BYTESHUFFLE) nbytes: 3.6P; cbytes: 0; initialized: 0/1000000000 mode: w; path: big.zarr
See the persistence documentation for more details of the file format.
zarr is optimised for accessing and storing data in contiguous
slices, of the same size or larger than chunks. It is not and probably
never will be optimised for single item access.
Chunks sizes >= 1M are generally good. Optimal chunk shape will depend on the correlation structure in your data.
zarr is designed for use in parallel computations working
chunk-wise over data. Try it with dask.array. If using in a
multi-threaded, set zarr to use blosc in contextual mode:
>>> zarr.set_blosc_options(use_context=True)
zarr uses c-blosc internally for
compression and decompression and borrows code heavily from
bcolz.