Skip to content

pulin05/fred_mcp_server

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FRED MCP Server

fred_demo.mov

A Model Context Protocol (MCP) server for accessing and analyzing Federal Reserve Economic Data (FRED).

Overview

This server provides access to Federal Reserve Economic Data (FRED) using the FRED API through the Model Context Protocol.

Features

  • Economic Data Access: Retrieve economic indicators and time series data from FRED
  • Trend Analysis: Analyze economic trends over time
  • Comparative Analysis: Compare multiple economic indicators
  • Metadata Access: Get information about available economic series
  • Prompt Templates: Use pre-defined prompt templates for common economic analysis tasks

Installation

Prerequisites

  • Python 3.10 or higher
  • A FRED API key (for the backend service)

Install from Source

# Clone the repository
git clone https://github.com/yourusername/fred-mcp-server.git
cd fred-mcp-server

# Create a virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install the package
# Install with pip
pip install .

# Install with UV (recommended for exact dependency versions)
uv pip install .

Configuration

The server can be configured using environment variables:

  • FRED_API_KEY: Your FRED API key (required)
  • LOG_LEVEL: Logging level (default: "INFO")
  • LOG_FILE: Log file path (default: "fred_mcp_server.log")

Usage

Running the Server

# Run directly
python -m fred_mcp_server

# Or using the installed script
fred-mcp

Using with Claude for Desktop

To use with Claude for Desktop, add this server to your Claude configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "fred": {
      "command": "uv",
      "args": [
        "run",
        "-m",
        "fred_mcp_server"
      ],
      "cwd": "<PATH_TO_FRED_MCP_SERVER>/src",
      "env": {
        "FRED_API_KEY": "your_fred_api_key_here"
      }
    }
  }
}

Notes:

  • Replace <PATH_TO_FRED_MCP_SERVER> with the absolute path to your fred directory
  • You can use "command": "uv" with "args": ["run", "-m", "fred_mcp_server"] if using the uv package manager

Note: Replace your_fred_api_key_here with your actual FRED API key. You can obtain a free API key by registering at https://fred.stlouisfed.org/docs/api/api_key.html

Available Tools

All tools use a consistent fred_ prefix for clear namespace management:

  • search_fred_series: Search for economic data series by keywords or category
  • fred_get_series_data: Retrieve time series data for a specific economic indicator
  • fred_get_series_metadata: Get detailed metadata about a specific economic data series
  • fred_get_category_series: List series in a specific FRED category
  • fred_get_releases: Get economic data releases from FRED
  • fred_compare_series: Compare multiple economic indicators over a specified time period
  • fred_calculate_statistics: Calculate basic statistics for a FRED series
  • fred_detect_trends: Identify trends in FRED economic data
  • analyze_economic_trends: Analyze trends in economic indicators over time

Available Prompts

  • economic-data-search: How to effectively search for economic indicators
  • data-visualization-guide: How to create and interpret economic data visualizations
  • trend-analysis-guide: How to analyze trends in economic indicators
  • comparative-analysis: How to perform comparative analysis of economic indicators
  • latest-data-analysis: How to analyze the latest economic indicators

FRED API Disclaimer

This product uses the FRED® API but is not endorsed or certified by the Federal Reserve Bank of St. Louis. By using this product, you agree to comply with the FRED® API Terms of Use.

License

MIT

About

MCP Server for accessing FRED data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%