Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions theories/WildCat/DisplayedEquiv.v
Original file line number Diff line number Diff line change
Expand Up @@ -17,11 +17,11 @@ Class DHasEquivs {A : Type} `{HasEquivs A}
DCatEquiv f a' b' -> DHom f a' b';
dcate_isequiv : forall {a b} {f : a $<~> b} {a'} {b'}
(f' : DCatEquiv f a' b'), DCatIsEquiv (dcate_fun f');
dcate_buildequiv : forall {a b} {f : a $-> b} `{!CatIsEquiv f} {a'} {b'}
dcate_buildequiv : forall {a b} {f : a $-> b} {fe : CatIsEquiv f} {a'} {b'}
(f' : DHom f a' b') {fe' : DCatIsEquiv f'},
DCatEquiv (Build_CatEquiv f) a' b';
dcate_buildequiv_fun : forall {a b} {f : a $-> b} `{!CatIsEquiv f}
{a'} {b'} (f' : DHom f a' b') {fe' : DCatIsEquiv f'},
DCatEquiv (Build_CatEquiv (fe:=fe) f) a' b';
dcate_buildequiv_fun : forall {a b} {f : a $-> b} {fe : CatIsEquiv f}
{a'} {b'} (f' : DHom f a' b') {fe' : DCatIsEquiv (fe:=fe) f'},
DGpdHom (cate_buildequiv_fun f)
(dcate_fun (dcate_buildequiv f' (fe':=fe'))) f';
dcate_inv' : forall {a b} {f : a $<~> b} {a'} {b'} (f' : DCatEquiv f a' b'),
Expand All @@ -44,8 +44,8 @@ Global Existing Instance dcate_isequiv.
Coercion dcate_fun : DCatEquiv >-> DHom.

Definition Build_DCatEquiv {A} {D : A -> Type} `{DHasEquivs A D}
{a b : A} {f : a $-> b} `{!CatIsEquiv f} {a' : D a} {b' : D b}
(f' : DHom f a' b') {fe' : DCatIsEquiv f'}
{a b : A} {f : a $-> b} {fe : CatIsEquiv f} {a' : D a} {b' : D b}
(f' : DHom f a' b') {fe' : DCatIsEquiv (fe:=fe) f'}
: DCatEquiv (Build_CatEquiv f) a' b'
:= dcate_buildequiv f' (fe':=fe').

Expand Down Expand Up @@ -142,7 +142,7 @@ Proof.
snrapply Build_HasEquivs.
1:{ intros [a a'] [b b']. exact {f : a $<~> b & DCatEquiv f a' b'}. }
all: intros aa' bb' [f f'].
- exact {fe : CatIsEquiv f & DCatIsEquiv f'}.
- exact {fe : CatIsEquiv f & DCatIsEquiv (fe:=fe) f'}.
- exists f. exact f'.
- exact (cate_isequiv f; dcate_isequiv f').
- intros [fe fe'].
Expand Down
1 change: 1 addition & 0 deletions theories/WildCat/Equiv.v
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ Class HasEquivs (A : Type) `{Is1Cat A} :=
Existing Class CatIsEquiv.
Arguments CatIsEquiv {A _ _ _ _ _ a b} f.
Global Existing Instance cate_isequiv.
Arguments cate_isequiv {A _ _ _ _ _ a b} f.

(** Since apparently a field of a record can't be the source of a coercion (Coq complains about the uniform inheritance condition, although as officially stated that condition appears to be satisfied), we redefine all the fields of [HasEquivs]. *)

Expand Down