Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
code for amlcompute section
  • Loading branch information
sdgilley committed Jan 4, 2019
commit 80bba4c7ae1f08f537dd88347c0a452ae8f71bdb
48 changes: 48 additions & 0 deletions ignore/doc-qa/how-to-set-up-training-targets/amlcompute.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Code for Azure Machine Learning Compute - Run-based creation

# Check core SDK version number
import azureml.core

print("SDK version:", azureml.core.VERSION)


from azureml.core import Workspace
ws = Workspace.from_config()


# Set up an experiment
from azureml.core import Experiment
experiment_name = 'my-experiment'
script_folder= "./"

exp = Experiment(workspace=ws, name=experiment_name)


#<amlcompute_temp>
from azureml.core.compute import ComputeTarget, AmlCompute

# First, list the supported VM families for Azure Machine Learning Compute
print(AmlCompute.supported_vmsizes(workspace=ws))

from azureml.core.runconfig import RunConfiguration
# Create a new runconfig object
run_temp_compute = RunConfiguration()

# Signal that you want to use AmlCompute to execute the script
run_temp_compute.target = "amlcompute"

# AmlCompute is created in the same region as your workspace
# Set the VM size for AmlCompute from the list of supported_vmsizes
run_temp_compute.amlcompute.vm_size = 'STANDARD_D2_V2'
#</amlcompute_temp>


# Submit the experiment using the run configuration
from azureml.core import ScriptRunConfig

src = ScriptRunConfig(source_directory = script_folder, script = 'train.py', run_config = run_temp_compute)
run = exp.submit(src)
run.wait_for_completion(show_output = True)



72 changes: 72 additions & 0 deletions ignore/doc-qa/how-to-set-up-training-targets/amlcompute2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# Code for Azure Machine Learning Compute - Persistent compute

# Check core SDK version number
import azureml.core

print("SDK version:", azureml.core.VERSION)

from azureml.core import Workspace
ws = Workspace.from_config()


# Set up an experiment
from azureml.core import Experiment
experiment_name = 'my-experiment'
script_folder= "./"

exp = Experiment(workspace=ws, name=experiment_name)

#<cpu_basic>
from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException

# Choose a name for your CPU cluster
cpu_cluster_name = "cpucluster"

# Verify that cluster does not exist already
try:
cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)
print('Found existing cluster, use it.')
except ComputeTargetException:
compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',
max_nodes=4)
cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)

cpu_cluster.wait_for_completion(show_output=True)
#</cpu_basic>

#<aml_runconfig>
from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import DEFAULT_CPU_IMAGE

# Create a new runconfig object
run_amlcompute = RunConfiguration()

# Use the cpu_cluster you created above.
run_amlcompute.target = cpu_cluster

# Enable Docker
run_amlcompute.environment.docker.enabled = True

# Set Docker base image to the default CPU-based image
run_amlcompute.environment.docker.base_image = DEFAULT_CPU_IMAGE

# Use conda_dependencies.yml to create a conda environment in the Docker image for execution
run_amlcompute.environment.python.user_managed_dependencies = False

# Auto-prepare the Docker image when used for execution (if it is not already prepared)
run_amlcompute.auto_prepare_environment = True

# Specify CondaDependencies obj, add necessary packages
run_amlcompute.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'])
#</aml_runconfig>

# Submit the experiment using the run configuration
#<amlcompute_submit>
from azureml.core import ScriptRunConfig

src = ScriptRunConfig(source_directory = script_folder, script = 'train.py', run_config = run_amlcompute)
run = exp.submit(src)
run.wait_for_completion(show_output = True)
#</amlcompute_submit>