Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
update samples from Release-167 as a part of 1.0.83 SDK release
  • Loading branch information
vizhur committed Jan 6, 2020
commit c95f970dc88c69c210bb6aa8ef968ae0bebabfb5
2 changes: 1 addition & 1 deletion configuration.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@
"source": [
"import azureml.core\n",
"\n",
"print(\"This notebook was created using version 1.0.81 of the Azure ML SDK\")\n",
"print(\"This notebook was created using version 1.0.83 of the Azure ML SDK\")\n",
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
]
},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@ dependencies:
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<=0.23.4
- py-xgboost<=0.80
- pyarrow>=0.11.0
- fbprophet==0.5
- pytorch=1.1.0
- cudatoolkit=9.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@ dependencies:
- scikit-learn>=0.19.0,<=0.20.3
- pandas>=0.22.0,<0.23.0
- py-xgboost<=0.80
- pyarrow>=0.11.0
- fbprophet==0.5
- pytorch=1.1.0
- cudatoolkit=9.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,3 @@ name: auto-ml-classification-bank-marketing-all-features
dependencies:
- pip:
- azureml-sdk
- interpret
- azureml-defaults
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- onnxruntime==1.0.0
- azureml-explain-model
- azureml-contrib-interpret
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,3 @@ name: auto-ml-classification-credit-card-fraud
dependencies:
- pip:
- azureml-sdk
- interpret
- azureml-defaults
- azureml-explain-model
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
Original file line number Diff line number Diff line change
Expand Up @@ -519,12 +519,12 @@
"name": "anshirga"
}
],
"datasets": [
"None"
],
"compute": [
"AML Compute"
],
"datasets": [
"None"
],
"deployment": [
"None"
],
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,3 @@ name: auto-ml-classification-text-dnn
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-train
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels
Original file line number Diff line number Diff line change
Expand Up @@ -347,7 +347,7 @@
"\n",
"automl_settings = {\n",
" \"iteration_timeout_minutes\": 10,\n",
" \"experiment_timeout_minutes\": 10,\n",
" \"experiment_timeout_hours\": 0.2,\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'r2_score',\n",
" \"preprocess\": True,\n",
Expand Down Expand Up @@ -378,7 +378,7 @@
"metrics_output_name = 'metrics_output'\n",
"best_model_output_name = 'best_model_output'\n",
"\n",
"metirics_data = PipelineData(name='metrics_data',\n",
"metrics_data = PipelineData(name='metrics_data',\n",
" datastore=dstor,\n",
" pipeline_output_name=metrics_output_name,\n",
" training_output=TrainingOutput(type='Metrics'))\n",
Expand All @@ -397,7 +397,7 @@
"automl_step = AutoMLStep(\n",
" name='automl_module',\n",
" automl_config=automl_config,\n",
" outputs=[metirics_data, model_data],\n",
" outputs=[metrics_data, model_data],\n",
" allow_reuse=False)"
]
},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,3 @@ name: auto-ml-continuous-retraining
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-pipeline
- azureml-widgets
- matplotlib
- pandas_ml
Original file line number Diff line number Diff line change
Expand Up @@ -358,7 +358,7 @@
"\n",
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" experiment_timeout_minutes = 60,\n",
" experiment_timeout_hours = 1,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" validation_data=valid_dataset, \n",
Expand Down
Original file line number Diff line number Diff line change
@@ -1,12 +1,4 @@
name: auto-ml-forecasting-beer-remote
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-train
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,7 @@
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**experiment_timeout_minutes**|Experimentation timeout in minutes.|\n",
"|**experiment_timeout_hours**|Experimentation timeout in hours.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**compute_target**|The remote compute for training.|\n",
Expand All @@ -260,7 +260,7 @@
"|**target_lags**|The target_lags specifies how far back we will construct the lags of the target variable.|\n",
"|**drop_column_names**|Name(s) of columns to drop prior to modeling|\n",
"\n",
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_minutes parameter value to get results."
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
Expand Down Expand Up @@ -305,7 +305,7 @@
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" blacklist_models = ['ExtremeRandomTrees'], \n",
" experiment_timeout_minutes=20,\n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
Expand Down
Original file line number Diff line number Diff line change
@@ -1,11 +1,4 @@
name: auto-ml-forecasting-bike-share
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels
Original file line number Diff line number Diff line change
Expand Up @@ -302,7 +302,7 @@
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**blacklist_models**|Models in blacklist won't be used by AutoML. All supported models can be found at [here](https://docs.microsoft.com/en-us/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting?view=azure-ml-py).|\n",
"|**experiment_timeout_minutes**|Maximum amount of time in minutes that the experiment take before it terminates.|\n",
"|**experiment_timeout_hours**|Maximum amount of time in hours that the experiment take before it terminates.|\n",
"|**training_data**|The training data to be used within the experiment.|\n",
"|**label_column_name**|The name of the label column.|\n",
"|**compute_target**|The remote compute for training.|\n",
Expand All @@ -316,7 +316,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_minutes parameter value to get results."
"This notebook uses the blacklist_models parameter to exclude some models that take a longer time to train on this dataset. You can choose to remove models from the blacklist_models list but you may need to increase the experiment_timeout_hours parameter value to get results."
]
},
{
Expand All @@ -333,7 +333,7 @@
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" blacklist_models = ['ExtremeRandomTrees', 'AutoArima', 'Prophet'], \n",
" experiment_timeout_minutes=20,\n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
Expand Down Expand Up @@ -578,7 +578,7 @@
"automl_config = AutoMLConfig(task='forecasting', \n",
" primary_metric='normalized_root_mean_squared_error',\n",
" blacklist_models = ['ElasticNet','ExtremeRandomTrees','GradientBoosting','XGBoostRegressor','ExtremeRandomTrees', 'AutoArima', 'Prophet'], #These models are blacklisted for tutorial purposes, remove this for real use cases. \n",
" experiment_timeout_minutes=20,\n",
" experiment_timeout_hours=0.3,\n",
" training_data=train,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,3 @@ name: auto-ml-forecasting-energy-demand
dependencies:
- pip:
- azureml-sdk
- interpret
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels
- azureml-explain-model
- azureml-contrib-interpret
Original file line number Diff line number Diff line change
Expand Up @@ -251,7 +251,7 @@
"source": [
"automl_settings = {\n",
" \"iteration_timeout_minutes\" : 5,\n",
" \"experiment_timeout_minutes\" : 15,\n",
" \"experiment_timeout_hours\" : 0.25,\n",
" \"primary_metric\" : 'normalized_mean_absolute_error',\n",
" \"time_column_name\": time_column_name,\n",
" \"grain_column_names\": grain_column_names,\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,3 @@ name: auto-ml-forecasting-grouping
dependencies:
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-pipeline
- azureml-widgets
- pandas_ml
- statsmodels
- matplotlib
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def build_pipeline_steps(automlconfig: AutoMLConfig,
# create each automl step end-to-end (train, register)
for group_name, conf in configs.items():
# create automl metrics output
metirics_data = PipelineData(
metrics_data = PipelineData(
name='metrics_data_{}'.format(group_name),
pipeline_output_name=metrics_output_name.format(group_name),
training_output=TrainingOutput(type='Metrics'))
Expand All @@ -84,7 +84,7 @@ def build_pipeline_steps(automlconfig: AutoMLConfig,
automl_step = AutoMLStep(
name='automl_{}'.format(group_name),
automl_config=conf,
outputs=[metirics_data, model_data],
outputs=[metrics_data, model_data],
allow_reuse=True)
steps.append(automl_step)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,7 @@
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_forecasting_function.log',\n",
" primary_metric='normalized_root_mean_squared_error',\n",
" experiment_timeout_minutes=15,\n",
" experiment_timeout_hours=0.25,\n",
" enable_early_stopping=True,\n",
" training_data=train_data,\n",
" compute_target=compute_target,\n",
Expand Down
Original file line number Diff line number Diff line change
@@ -1,11 +1,4 @@
name: automl-forecasting-function
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- pandas_ml
- statsmodels
- matplotlib
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,7 @@
"|-|-|\n",
"|**task**|forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize.<br> Forecasting supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>\n",
"|**experiment_timeout_minutes**|Experimentation timeout in minutes.|\n",
"|**experiment_timeout_hours**|Experimentation timeout in hours.|\n",
"|**enable_early_stopping**|If early stopping is on, training will stop when the primary metric is no longer improving.|\n",
"|**training_data**|Input dataset, containing both features and label column.|\n",
"|**label_column_name**|The name of the label column.|\n",
Expand Down Expand Up @@ -366,7 +366,7 @@
"automl_config = AutoMLConfig(task='forecasting',\n",
" debug_log='automl_oj_sales_errors.log',\n",
" primary_metric='normalized_mean_absolute_error',\n",
" experiment_timeout_minutes=15,\n",
" experiment_timeout_hours=0.25,\n",
" training_data=train_dataset,\n",
" label_column_name=target_column_name,\n",
" compute_target=compute_target,\n",
Expand Down
Original file line number Diff line number Diff line change
@@ -1,11 +1,4 @@
name: auto-ml-forecasting-orange-juice-sales
dependencies:
- fbprophet==0.5
- py-xgboost<=0.80
- pip:
- azureml-sdk
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- statsmodels
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'average_precision_score_weighted',\n",
" \"preprocess\": True,\n",
" \"experiment_timeout_minutes\": 10, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ablity to find the best model possible\n",
" \"experiment_timeout_hours\": 0.2, # This is a time limit for testing purposes, remove it for real use cases, this will drastically limit ability to find the best model possible\n",
" \"verbosity\": logging.INFO,\n",
" \"enable_stack_ensemble\": False\n",
"}\n",
Expand Down Expand Up @@ -260,17 +260,7 @@
"metadata": {},
"source": [
"#### Print the properties of the model\n",
"The fitted_model is a python object and you can read the different properties of the object.\n",
"See *Print the properties of the model* section in [this sample notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification/auto-ml-classification.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Deploy\n",
"\n",
"To deploy the model into a web service endpoint, see _Deploy_ section in [this sample notebook](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-with-deployment/auto-ml-classification-with-deployment.ipynb)"
"The fitted_model is a python object and you can read the different properties of the object.\n"
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,3 @@ name: auto-ml-classification-credit-card-fraud-local
dependencies:
- pip:
- azureml-sdk
- interpret
- azureml-defaults
- azureml-explain-model
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,7 @@
"|-|-|\n",
"|**task**|classification, regression or forecasting|\n",
"|**primary_metric**|This is the metric that you want to optimize. Regression supports the following primary metrics: <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i>|\n",
"|**experiment_timeout_minutes**| Maximum amount of time in minutes that all iterations combined can take before the experiment terminates.|\n",
"|**experiment_timeout_hours**| Maximum amount of time in hours that all iterations combined can take before the experiment terminates.|\n",
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
"|**featurization**| 'auto' / 'off' / FeaturizationConfig Indicator for whether featurization step should be done automatically or not, or whether customized featurization should be used. Note: If the input data is sparse, featurization cannot be turned on.|\n",
"|**n_cross_validations**|Number of cross validation splits.|\n",
Expand Down Expand Up @@ -262,7 +262,7 @@
"source": [
"automl_settings = {\n",
" \"enable_early_stopping\": True, \n",
" \"experiment_timeout_minutes\" : 10,\n",
" \"experiment_timeout_hours\" : 0.2,\n",
" \"max_concurrent_iterations\": 4,\n",
" \"max_cores_per_iteration\": -1,\n",
" \"n_cross_validations\": 5,\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,3 @@ name: auto-ml-regression-hardware-performance-explanation-and-featurization
dependencies:
- pip:
- azureml-sdk
- interpret
- azureml-defaults
- azureml-explain-model
- azureml-train-automl
- azureml-widgets
- matplotlib
- pandas_ml
- azureml-explain-model
- azureml-contrib-interpret
Original file line number Diff line number Diff line change
Expand Up @@ -188,15 +188,19 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"tags": [
"automlconfig-remarks-sample"
]
},
"outputs": [],
"source": [
"automl_settings = {\n",
" \"n_cross_validations\": 3,\n",
" \"primary_metric\": 'r2_score',\n",
" \"preprocess\": True,\n",
" \"enable_early_stopping\": True, \n",
" \"experiment_timeout_minutes\": 20, #for real scenarios we reccommend a timeout of at least one hour \n",
" \"experiment_timeout_hours\": 0.3, #for real scenarios we reccommend a timeout of at least one hour \n",
" \"max_concurrent_iterations\": 4,\n",
" \"max_cores_per_iteration\": -1,\n",
" \"verbosity\": logging.INFO,\n",
Expand Down
Loading