Skip to content

Codes for Within Subject Memory Encoding project

Notifications You must be signed in to change notification settings

BertoLabMUSC/Within_Subject

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Within Subject data analysis

This repository contains analysis code for the Within Subject project carried out by researchers at the Konopka Lab, UTSW.

Citation

If you use anything in this repository please cite the following publication:

Pre-print URL: https://www.biorxiv.org/content/10.1101/853531v1

Files

directory contents code
processing_qc Output data from initial processing and quality check. 01_Data_processing_QC.R
processing_memory Output data from memory (SME) analysis. 02_SME_Analysis.R
processing_math Output data from math task analysis. 03_MATH_Analysis.R
processing_mri Output data from MRI (thickness) analysis. 04_MRI_Analysis.R
processing_behavior Output data from behavioral analysis. 05_BEHAVIORAL_Analysis.R
final_visualizations Some visualization and data integration. 06_Visualizations.R
enrichments_SME Enrichment analysis for SME genes. 07_Cross-Enrich_SME.R
processing_wgcna Output data from the consensus WGCNA analysis. 08_consWGCNA.R
enrichments_wgcna Enrichment analysis for co-expression modules. 09_Enrichments_consWGCNA.R
magma_wgcna GWAS enrichment for the co-expression modules. 10_consWGCNA_Magma.sh
processing_scRNAseq Output data from single-nuclei RNA-seq analysis. 11_SingleCell_Analysis.R
supp_tables Databases and supplementary tables. 12_Database.R
networking Output data from PPI netowrk analysis. 13_PPI_Networks.R
supp_analysis Supplementary data and analysis.
Shiny_App Shiny app for SME - Gene Scatterplot.

]

About

Codes for Within Subject Memory Encoding project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 92.1%
  • Shell 7.9%