Skip to content

Conversation

@GulajavaMinistudio
Copy link
Owner

What changes were proposed in this pull request?

(Please fill in changes proposed in this fix)

How was this patch tested?

(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)
(If this patch involves UI changes, please attach a screenshot; otherwise, remove this)

Please review http://spark.apache.org/contributing.html before opening a pull request.

kiszk and others added 11 commits November 27, 2017 20:32
## What changes were proposed in this pull request?

This PR changes `FormatString` code generation to place generated code for expressions for arguments into separated methods if these size could be large.
This PR passes variable arguments by using an `Object` array.

## How was this patch tested?

Added new test cases into `StringExpressionSuite`

Author: Kazuaki Ishizaki <[email protected]>

Closes #19817 from kiszk/SPARK-22603.
…ns based on cbo config

## What changes were proposed in this pull request?

Currently, relation stats is the same whether cbo is enabled or not. While relation (`LogicalRelation` or `HiveTableRelation`) is a `LogicalPlan`, its behavior is inconsistent with other plans. This can cause confusion when user runs EXPLAIN COST commands. Besides, when CBO is disabled, we apply the size-only estimation strategy, so there's no need to propagate other catalog statistics to relation.

## How was this patch tested?

Enhanced existing tests case and added a test case.

Author: Zhenhua Wang <[email protected]>

Closes #19757 from wzhfy/catalog_stats_conversion.
## What changes were proposed in this pull request?

Code generation is disabled for CaseWhen when the number of branches is higher than `spark.sql.codegen.maxCaseBranches` (which defaults to 20). This was done to prevent the well known 64KB method limit exception.
This PR proposes to support code generation also in those cases (without causing exceptions of course). As a side effect, we could get rid of the `spark.sql.codegen.maxCaseBranches` configuration.

## How was this patch tested?

existing UTs

Author: Marco Gaido <[email protected]>
Author: Marco Gaido <[email protected]>

Closes #19752 from mgaido91/SPARK-22520.
## What changes were proposed in this pull request?

In PySpark API Document, DataFrame.write.csv() says that setting the quote parameter to an empty string should turn off quoting. Instead, it uses the [null character](https://en.wikipedia.org/wiki/Null_character) as the quote.

This PR fixes the doc.

## How was this patch tested?

Manual.

```
cd python/docs
make html
open _build/html/pyspark.sql.html
```

Author: gaborgsomogyi <[email protected]>

Closes #19814 from gaborgsomogyi/SPARK-22484.
…andas to respect session timezone

## What changes were proposed in this pull request?

When converting Pandas DataFrame/Series from/to Spark DataFrame using `toPandas()` or pandas udfs, timestamp values behave to respect Python system timezone instead of session timezone.

For example, let's say we use `"America/Los_Angeles"` as session timezone and have a timestamp value `"1970-01-01 00:00:01"` in the timezone. Btw, I'm in Japan so Python timezone would be `"Asia/Tokyo"`.

The timestamp value from current `toPandas()` will be the following:

```
>>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles")
>>> df = spark.createDataFrame([28801], "long").selectExpr("timestamp(value) as ts")
>>> df.show()
+-------------------+
|                 ts|
+-------------------+
|1970-01-01 00:00:01|
+-------------------+

>>> df.toPandas()
                   ts
0 1970-01-01 17:00:01
```

As you can see, the value becomes `"1970-01-01 17:00:01"` because it respects Python timezone.
As we discussed in #18664, we consider this behavior is a bug and the value should be `"1970-01-01 00:00:01"`.

## How was this patch tested?

Added tests and existing tests.

Author: Takuya UESHIN <[email protected]>

Closes #19607 from ueshin/issues/SPARK-22395.
## What changes were proposed in this pull request?

a minor cleanup for #19752 . Remove the outer if as the code is inside `do while`

## How was this patch tested?

existing tests

Author: Wenchen Fan <[email protected]>

Closes #19830 from cloud-fan/minor.
… context

## What changes were proposed in this pull request?

Mostly when we call `CodegenContext.splitExpressions`, we want to split the code into methods and pass the current inputs of the codegen context to these methods so that the code in these methods can still be evaluated.

This PR makes the expectation clear, while still keep the advanced version of `splitExpressions` to customize the inputs to pass to generated methods.

## How was this patch tested?

existing test

Author: Wenchen Fan <[email protected]>

Closes #19827 from cloud-fan/codegen.
## What changes were proposed in this pull request?

Currently, relation size is computed as the sum of file size, which is error-prone because storage format like parquet may have a much smaller file size compared to in-memory size. When we choose broadcast join based on file size, there's a risk of OOM. But if the number of rows is available in statistics, we can get a better estimation by `numRows * rowSize`, which helps to alleviate this problem.

## How was this patch tested?

Added a new test case for data source table and hive table.

Author: Zhenhua Wang <[email protected]>
Author: Zhenhua Wang <[email protected]>

Closes #19743 from wzhfy/better_leaf_size.
…le/view metadata is parseable by Spark before persisting it

## What changes were proposed in this pull request?
* JIRA:  [SPARK-22431](https://issues.apache.org/jira/browse/SPARK-22431)  : Creating Permanent view with illegal type

**Description:**
- It is possible in Spark SQL to create a permanent view that uses an nested field with an illegal name.
- For example if we create the following view:
```create view x as select struct('a' as `$q`, 1 as b) q```
- A simple select fails with the following exception:

```
select * from x;

org.apache.spark.SparkException: Cannot recognize hive type string: struct<$q:string,b:int>
  at org.apache.spark.sql.hive.client.HiveClientImpl$.fromHiveColumn(HiveClientImpl.scala:812)
  at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$getTableOption$1$$anonfun$apply$11$$anonfun$7.apply(HiveClientImpl.scala:378)
  at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$getTableOption$1$$anonfun$apply$11$$anonfun$7.apply(HiveClientImpl.scala:378)
...
```
**Issue/Analysis**: Right now, we can create a view with a schema that cannot be read back by Spark from the Hive metastore.  For more details, please see the discussion about the analysis and proposed fix options in comment 1 and comment 2 in the [SPARK-22431](https://issues.apache.org/jira/browse/SPARK-22431)

**Proposed changes**:
 - Fix the hive table/view codepath to check whether the schema datatype is parseable by Spark before persisting it in the metastore. This change is localized to HiveClientImpl to do the check similar to the check in FromHiveColumn. This is fail-fast and we will avoid the scenario where we write something to the metastore that we are unable to read it back.
- Added new unit tests
- Ran the sql related unit test suites ( hive/test, sql/test, catalyst/test) OK

With the fix:
```
create view x as select struct('a' as `$q`, 1 as b) q;
17/11/28 10:44:55 ERROR SparkSQLDriver: Failed in [create view x as select struct('a' as `$q`, 1 as b) q]
org.apache.spark.SparkException: Cannot recognize hive type string: struct<$q:string,b:int>
	at org.apache.spark.sql.hive.client.HiveClientImpl$.org$apache$spark$sql$hive$client$HiveClientImpl$$getSparkSQLDataType(HiveClientImpl.scala:884)
	at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$org$apache$spark$sql$hive$client$HiveClientImpl$$verifyColumnDataType$1.apply(HiveClientImpl.scala:906)
	at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$org$apache$spark$sql$hive$client$HiveClientImpl$$verifyColumnDataType$1.apply(HiveClientImpl.scala:906)
	at scala.collection.Iterator$class.foreach(Iterator.scala:893)
...
```
## How was this patch tested?
- New unit tests have been added.

hvanhovell, Please review and share your thoughts/comments.  Thank you so much.

Author: Sunitha Kambhampati <[email protected]>

Closes #19747 from skambha/spark22431.
## What changes were proposed in this pull request?
`CatalogImpl.refreshTable` uses `foreach(..)` to refresh all tables in a view. This traverses all nodes in the subtree and calls `LogicalPlan.refresh()` on these nodes. However `LogicalPlan.refresh()` is also refreshing its children, as a result refreshing a large view can be quite expensive.

This PR just calls `LogicalPlan.refresh()` on the top node.

## How was this patch tested?
Existing tests.

Author: Herman van Hovell <[email protected]>

Closes #19837 from hvanhovell/SPARK-22637.
## What changes were proposed in this pull request?

This is a stripped down version of the `KubernetesClusterSchedulerBackend` for Spark with the following components:
- Static Allocation of Executors
- Executor Pod Factory
- Executor Recovery Semantics

It's step 1 from the step-wise plan documented [here](apache-spark-on-k8s#441 (comment)).
This addition is covered by the [SPIP vote](http://apache-spark-developers-list.1001551.n3.nabble.com/SPIP-Spark-on-Kubernetes-td22147.html) which passed on Aug 31 .

## How was this patch tested?

- The patch contains unit tests which are passing.
- Manual testing: `./build/mvn -Pkubernetes clean package` succeeded.
- It is a **subset** of the entire changelist hosted in http://github.com/apache-spark-on-k8s/spark which is in active use in several organizations.
- There is integration testing enabled in the fork currently [hosted by PepperData](spark-k8s-jenkins.pepperdata.org:8080) which is being moved over to RiseLAB CI.
- Detailed documentation on trying out the patch in its entirety is in: https://apache-spark-on-k8s.github.io/userdocs/running-on-kubernetes.html

cc rxin felixcheung mateiz (shepherd)
k8s-big-data SIG members & contributors: mccheah ash211 ssuchter varunkatta kimoonkim erikerlandson liyinan926 tnachen ifilonenko

Author: Yinan Li <[email protected]>
Author: foxish <[email protected]>
Author: mcheah <[email protected]>

Closes #19468 from foxish/spark-kubernetes-3.
@GulajavaMinistudio GulajavaMinistudio merged commit 3e0e76f into GulajavaMinistudio:master Nov 29, 2017
GulajavaMinistudio pushed a commit that referenced this pull request Apr 19, 2021
…gate expressions without aggregate function

### What changes were proposed in this pull request?
This PR:
- Adds a new expression `GroupingExprRef` that can be used in aggregate expressions of `Aggregate` nodes to refer grouping expressions by index. These expressions capture the data type and nullability of the referred grouping expression.
- Adds a new rule `EnforceGroupingReferencesInAggregates` that inserts the references in the beginning of the optimization phase.
- Adds a new rule `UpdateGroupingExprRefNullability` to update nullability of `GroupingExprRef` expressions as nullability of referred grouping expression can change during optimization.

### Why are the changes needed?
If aggregate expressions (without aggregate functions) in an `Aggregate` node are complex then the `Optimizer` can optimize out grouping expressions from them and so making aggregate expressions invalid.

Here is a simple example:
```
SELECT not(t.id IS NULL) , count(*)
FROM t
GROUP BY t.id IS NULL
```
In this case the `BooleanSimplification` rule does this:
```
=== Applying Rule org.apache.spark.sql.catalyst.optimizer.BooleanSimplification ===
!Aggregate [isnull(id#222)], [NOT isnull(id#222) AS (NOT (id IS NULL))#226, count(1) AS c#224L]   Aggregate [isnull(id#222)], [isnotnull(id#222) AS (NOT (id IS NULL))#226, count(1) AS c#224L]
 +- Project [value#219 AS id#222]                                                                 +- Project [value#219 AS id#222]
    +- LocalRelation [value#219]                                                                     +- LocalRelation [value#219]
```
where `NOT isnull(id#222)` is optimized to `isnotnull(id#222)` and so it no longer refers to any grouping expression.

Before this PR:
```
== Optimized Logical Plan ==
Aggregate [isnull(id#222)], [isnotnull(id#222) AS (NOT (id IS NULL))#234, count(1) AS c#232L]
+- Project [value#219 AS id#222]
   +- LocalRelation [value#219]
```
and running the query throws an error:
```
Couldn't find id#222 in [isnull(id#222)#230,count(1)#226L]
java.lang.IllegalStateException: Couldn't find id#222 in [isnull(id#222)#230,count(1)#226L]
```

After this PR:
```
== Optimized Logical Plan ==
Aggregate [isnull(id#222)], [NOT groupingexprref(0) AS (NOT (id IS NULL))#234, count(1) AS c#232L]
+- Project [value#219 AS id#222]
   +- LocalRelation [value#219]
```
and the query works.

### Does this PR introduce _any_ user-facing change?
Yes, the query works.

### How was this patch tested?
Added new UT.

Closes apache#31913 from peter-toth/SPARK-34581-keep-grouping-expressions.

Authored-by: Peter Toth <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
GulajavaMinistudio pushed a commit that referenced this pull request May 2, 2021
…gate expressions without aggregate function

### What changes were proposed in this pull request?
This PR adds a new rule `PullOutGroupingExpressions` to pull out complex grouping expressions to a `Project` node under an `Aggregate`. These expressions are then referenced in both grouping expressions and aggregate expressions without aggregate functions to ensure that optimization rules don't change the aggregate expressions to invalid ones that no longer refer to any grouping expressions.

### Why are the changes needed?
If aggregate expressions (without aggregate functions) in an `Aggregate` node are complex then the `Optimizer` can optimize out grouping expressions from them and so making aggregate expressions invalid.

Here is a simple example:
```
SELECT not(t.id IS NULL) , count(*)
FROM t
GROUP BY t.id IS NULL
```
In this case the `BooleanSimplification` rule does this:
```
=== Applying Rule org.apache.spark.sql.catalyst.optimizer.BooleanSimplification ===
!Aggregate [isnull(id#222)], [NOT isnull(id#222) AS (NOT (id IS NULL))#226, count(1) AS c#224L]   Aggregate [isnull(id#222)], [isnotnull(id#222) AS (NOT (id IS NULL))#226, count(1) AS c#224L]
 +- Project [value#219 AS id#222]                                                                 +- Project [value#219 AS id#222]
    +- LocalRelation [value#219]                                                                     +- LocalRelation [value#219]
```
where `NOT isnull(id#222)` is optimized to `isnotnull(id#222)` and so it no longer refers to any grouping expression.

Before this PR:
```
== Optimized Logical Plan ==
Aggregate [isnull(id#222)], [isnotnull(id#222) AS (NOT (id IS NULL))#234, count(1) AS c#232L]
+- Project [value#219 AS id#222]
   +- LocalRelation [value#219]
```
and running the query throws an error:
```
Couldn't find id#222 in [isnull(id#222)#230,count(1)#226L]
java.lang.IllegalStateException: Couldn't find id#222 in [isnull(id#222)#230,count(1)#226L]
```

After this PR:
```
== Optimized Logical Plan ==
Aggregate [_groupingexpression#233], [NOT _groupingexpression#233 AS (NOT (id IS NULL))#230, count(1) AS c#228L]
+- Project [isnull(value#219) AS _groupingexpression#233]
   +- LocalRelation [value#219]
```
and the query works.

### Does this PR introduce _any_ user-facing change?
Yes, the query works.

### How was this patch tested?
Added new UT.

Closes apache#32396 from peter-toth/SPARK-34581-keep-grouping-expressions-2.

Authored-by: Peter Toth <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

10 participants