Skip to content
This repository was archived by the owner on Aug 28, 2025. It is now read-only.
Merged
Changes from 1 commit
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
c1c8168
update optimization
awaelchli Mar 13, 2023
0504638
update inception
awaelchli Mar 13, 2023
da590db
update attention
awaelchli Mar 13, 2023
ec3d50a
incomplete GNN
awaelchli Mar 13, 2023
0b92f1d
update energy models
awaelchli Mar 13, 2023
a5466e4
update deep autoencoders
awaelchli Mar 13, 2023
88722ac
normalizing flows incomplete
awaelchli Mar 13, 2023
47f1cfe
autoregressive
awaelchli Mar 13, 2023
cfab2ee
vit
awaelchli Mar 13, 2023
b4d7be3
meta learning
awaelchli Mar 13, 2023
8ab731c
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Mar 13, 2023
18c2430
Apply suggestions from code review
awaelchli Mar 13, 2023
000c803
update gnn
awaelchli Mar 13, 2023
3824605
simclr
awaelchli Mar 13, 2023
d1a93e7
update
awaelchli Mar 13, 2023
6e04b38
Merge branch 'upgrade/course' of github.com:Lightning-AI/tutorials in…
awaelchli Mar 13, 2023
9377298
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Mar 13, 2023
b24b122
Update course_UvA-DL/05-transformers-and-MH-attention/Transformers_MH…
awaelchli Mar 13, 2023
099c50a
update
awaelchli Mar 13, 2023
82f2be6
links
awaelchli Mar 13, 2023
a6a1a17
Merge branch 'main' into upgrade/course
Borda Mar 14, 2023
5733cc0
Merge branch 'main' into upgrade/course
Borda Mar 14, 2023
28accf9
2.0.0rc0
Borda Mar 14, 2023
10615e9
lightning
Borda Mar 14, 2023
217be55
2.0
Borda Mar 14, 2023
1dc811a
Apply suggestions from code review
awaelchli Mar 14, 2023
bb1e40a
docs build fix
awaelchli Mar 14, 2023
835a628
stupid sphinx
awaelchli Mar 14, 2023
94e6725
Merge branch 'main' into upgrade/course
Borda Mar 14, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
normalizing flows incomplete
  • Loading branch information
awaelchli committed Mar 13, 2023
commit 88722ac7a5ed3f5a96e17f45b9deddb3b091f26f
32 changes: 17 additions & 15 deletions course_UvA-DL/09-normalizing-flows/NF_image_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pytorch_lightning as pl
import lightning as L
import seaborn as sns
import tabulate
import torch
Expand All @@ -22,16 +22,17 @@
import torch.optim as optim
import torch.utils.data as data
import torchvision
from IPython.display import HTML, display, set_matplotlib_formats
from IPython.display import HTML, display
import matplotlib_inline.backend_inline
from matplotlib.colors import to_rgb
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from torch import Tensor
from torchvision import transforms
from torchvision.datasets import MNIST
from tqdm.notebook import tqdm

# %matplotlib inline
set_matplotlib_formats("svg", "pdf") # For export
matplotlib_inline.backend_inline.set_matplotlib_formats("svg", "pdf") # For export
matplotlib.rcParams["lines.linewidth"] = 2.0
sns.reset_orig()

Expand All @@ -41,7 +42,7 @@
CHECKPOINT_PATH = os.environ.get("PATH_CHECKPOINT", "saved_models/tutorial11")

# Setting the seed
pl.seed_everything(42)
L.seed_everything(42)

# Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.determinstic = True
Expand Down Expand Up @@ -97,7 +98,7 @@ def discretize(sample):

# Loading the training dataset. We need to split it into a training and validation part
train_dataset = MNIST(root=DATASET_PATH, train=True, transform=transform, download=True)
pl.seed_everything(42)
L.seed_everything(42)
train_set, val_set = torch.utils.data.random_split(train_dataset, [50000, 10000])

# Loading the test set
Expand Down Expand Up @@ -258,7 +259,7 @@ def show_imgs(imgs, title=None, row_size=4):


# %%
class ImageFlow(pl.LightningModule):
class ImageFlow(L.LightningModule):
def __init__(self, flows, import_samples=8):
"""
Args:
Expand Down Expand Up @@ -449,7 +450,7 @@ def dequant(self, z, ldj):

# %%
# Testing invertibility of dequantization layer
pl.seed_everything(42)
L.seed_everything(42)
orig_img = train_set[0][0].unsqueeze(dim=0)
ldj = torch.zeros(
1,
Expand Down Expand Up @@ -916,9 +917,10 @@ def create_simple_flow(use_vardeq=True):
# %%
def train_flow(flow, model_name="MNISTFlow"):
# Create a PyTorch Lightning trainer
trainer = pl.Trainer(
trainer = L.Trainer(
default_root_dir=os.path.join(CHECKPOINT_PATH, model_name),
gpus=1 if torch.cuda.is_available() else 0,
accelerator="auto",
devices=1,
max_epochs=200,
gradient_clip_val=1.0,
callbacks=[
Expand Down Expand Up @@ -1216,12 +1218,12 @@ def print_num_params(model):
# The seeds are set to obtain reproducable generations and are not cherry picked.

# %%
pl.seed_everything(44)
L.seed_everything(44)
samples = flow_dict["vardeq"]["model"].sample(img_shape=[16, 1, 28, 28])
show_imgs(samples.cpu())

# %%
pl.seed_everything(44)
L.seed_everything(44)
samples = flow_dict["multiscale"]["model"].sample(img_shape=[16, 8, 7, 7])
show_imgs(samples.cpu())

Expand Down Expand Up @@ -1262,12 +1264,12 @@ def interpolate(model, img1, img2, num_steps=8):
exmp_imgs, _ = next(iter(train_loader))

# %%
pl.seed_everything(42)
L.seed_everything(42)
for i in range(2):
interpolate(flow_dict["vardeq"]["model"], exmp_imgs[2 * i], exmp_imgs[2 * i + 1])

# %%
pl.seed_everything(42)
L.seed_everything(42)
for i in range(2):
interpolate(flow_dict["multiscale"]["model"], exmp_imgs[2 * i], exmp_imgs[2 * i + 1])

Expand All @@ -1290,7 +1292,7 @@ def interpolate(model, img1, img2, num_steps=8):
# Below we visualize three examples of this:

# %%
pl.seed_everything(44)
L.seed_everything(44)
for _ in range(3):
z_init = flow_dict["multiscale"]["model"].prior.sample(sample_shape=[1, 8, 7, 7])
z_init = z_init.expand(8, -1, -1, -1)
Expand Down