Repository for MedARC group tackling the Algonauts 2025 challenge.
Clone the repository, install uv, and then run
uv syncThis will create a new virtual environment for the project with all the required dependencies. Activate the environment with
source .venv/bin/activateor use uv run. See the uv docs for more details.
Download the official challenge dataset, and copy or link it to datasets/algonauts_2025.competitors.
Precomputed features extracted from a number of backbone models are available on Huggingface. Once you have downloaded the features, copy or link them under datasets/ like so
datasets/
├── algonauts_2025.competitors
└── features
├── InternVL3_14B
├── Llama-3.2-1B
├── Llama-3.2-3B
├── internvl3_8b_8bit
├── qwen-2-5-omni-7b
├── qwen2-5_3B
├── vjepa2_avg_feat
└── whisper
Each feature directory should have a structure like
Llama-3.2-1B
├── friends
│ ├── s1
│ │ ├── friends_s01e01a.h5
│ │ ├── friends_s01e01b.h5
...
├── movie10
│ ├── bourne
│ │ ├── movie10_bourne01.h5
│ │ ├── movie10_bourne02.h5
...
└── ood
├── chaplin
│ ├── ood_chaplin1.h5
│ └── ood_chaplin2.h5
...
If you want to extract features manually, the model-specific scripts are located in the feature_extraction/ directory. To extract features for InternVL3 for example, run
uv run python feature_extraction/internvl3_video_features.pyTo train the model using the default config, run
uv run python train_feature_encoder.pyTo prepare a submission to codabench for the OOD movies, run
uv run python submit_feature_encoder.py \
--overrides \
checkpoint_dir=output/feature_encoding_default \
test_set_name=oodTo prepare a submission for Friends S7, set test_set_name=friends-s7. See the submission config for more details.
Generate the sweep of configs for training the ensemble
uv run generate_configs.pyTrain all the models in the ensemble
bash scripts/run_multiple_config_training.shEnsemble the top predictions for each subject and parcel by running the notebook prepare_stitching_submission.ipynb.
If you find this repository useful, please consider giving a star ⭐ and citation:
@article{villanueva2025predicting,
title = {Predicting Brain Responses To Natural Movies With Multimodal LLMs},
author = {Villanueva, Cesar Kadir Torrico and Tu, Jiaxin Cindy and Tripathy, Mihir and Lane, Connor and Iyer, Rishab and Scotti, Paul S},
journal = {arXiv preprint arXiv:2507.19956},
year = {2025}
}