Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
added missing testing for error exits for ZGELST routine, i.e.
modified TESTING/LIN/zerrls.f accordingly. Also fixed comments typo in
[S,D,C,Z]GELST.
modified:   SRC/cgelst.f
modified:   SRC/dgelst.f
modified:   SRC/sgelst.f
modified:   SRC/zgelst.f
modified:   TESTING/LIN/zerrls.f
  • Loading branch information
scr2016 committed Nov 10, 2022
commit d5203e94d5ea36b0fcce4f70bcc4a0be3b1fa325
2 changes: 1 addition & 1 deletion SRC/cgelst.f
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
*> \brief <b> CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q.</b>
*> \brief <b> CGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
Expand Down
2 changes: 1 addition & 1 deletion SRC/dgelst.f
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
*> \brief <b> DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q.</b>
*> \brief <b> DGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
Expand Down
2 changes: 1 addition & 1 deletion SRC/sgelst.f
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
*> \brief <b> SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q.</b>
*> \brief <b> SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
Expand Down
2 changes: 1 addition & 1 deletion SRC/zgelst.f
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
*> \brief <b> ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representaion of Q.</b>
*> \brief <b> ZGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.</b>
*
* =========== DOCUMENTATION ===========
*
Expand Down
61 changes: 59 additions & 2 deletions TESTING/LIN/zerrls.f
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
*> \verbatim
*>
*> ZERRLS tests the error exits for the COMPLEX*16 least squares
*> driver routines (ZGELS, CGELSS, CGELSY, CGELSD).
*> driver routines (ZGELS, ZGELST, ZGETSLS, CGELSS, CGELSY, CGELSD).
*> \endverbatim
*
* Arguments:
Expand Down Expand Up @@ -83,7 +83,8 @@ SUBROUTINE ZERRLS( PATH, NUNIT )
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELSY
EXTERNAL ALAESM, CHKXER, ZGELS, ZGELSD, ZGELSS, ZGELST,
$ ZGELSY, ZGETSLS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
Expand Down Expand Up @@ -130,10 +131,66 @@ SUBROUTINE ZERRLS( PATH, NUNIT )
INFOT = 8
CALL ZGELS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGELS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGELS( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELS ', INFOT, NOUT, LERR, OK )
*
* ZGELST
*
SRNAMT = 'ZGELST'
INFOT = 1
CALL ZGELST( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGELST( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGELST( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGELST( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZGELST( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGELST( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGELST( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL ZGELST( 'N', 1, 1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGELST', INFOT, NOUT, LERR, OK )
*
* ZGETSLS
*
SRNAMT = 'ZGETSLS'
INFOT = 1
CALL ZGETSLS( '/', 0, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL ZGETSLS( 'N', -1, 0, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL ZGETSLS( 'N', 0, -1, 0, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL ZGETSLS( 'N', 0, 0, -1, A, 1, B, 1, W, 1, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL ZGETSLS( 'N', 2, 0, 0, A, 1, B, 2, W, 2, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGETSLS( 'N', 2, 0, 0, A, 2, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL ZGETSLS( 'N', 0, 2, 0, A, 1, B, 1, W, 2, INFO )
CALL CHKXER( 'ZGETSLS', INFOT, NOUT, LERR, OK )
*
* ZGELSS
*
SRNAMT = 'ZGELSS'
Expand Down