This repository contains work for a research project exploring product recommender models using fine-tuned LLMs.
-
data/
: Directory storing formatted data used by the model.video/
: Movie and TV review datasets.preprocessed_movies.json
:embed_movies.py
: Python script for embedding movies.test_query.ipynb
: Jupyter notebook for testing queries against the movie database.chroma_db/
: Contains the sqlite3 database for Chroma.
-
src/
: Python files and notebooks for conducting experiments and building models.preprocess_data.ipynb
: Jupyter notebook for pre-processing the data. It combines metadata and reviews into a single JSON file.local_call.py
: Python script for evaluating local models.openai_call.py
: Python script for evaluating OpenAI models.request_test.ipynb
: Jupyter notebook for testing LLM queries and chainstools/
: Directory containing utility scripts.local_llm_chains.py
: Python script defining chains for local models.openai_chains.py
: Python script defining chains for OpenAI modelsutils.py
: Python script with various utility functions.
-
results/
: Directory where experiment results are saved.Mixtral-8x7B-Instruct-v0.1/
: Contains outputs and evaluations for the Mixtral-8x7B-Instruct-v0.1 model.gpt-3.5-turbo/
: Contains outputs and evaluations for the gpt-3.5-turbo model.gpt-4-1106-preview/
: Contains outputs for the gpt-4-1106-preview model.
-
figures/
: Directory for generating and saving figures and plots.plot_evals.py: Script for creating bar plots of eval files