tech, statistics, machine learning, computer simulation, numerical optimization
-
nnetsauce for Python and
nnetsauce for R
Statistical/Machine Learning using Randomized and Quasi-Randomized (neural) networks.
Read https://thierrymoudiki.github.io/blog/#QuasiRandomizedNN.
-
ahead for Python,
ahead for R and
ahead for Julia
Univariate and Multivariate time series forecasting with uncertainty quantification (including simulation). Home of:
dynrmandridge2. Read https://thierrymoudiki.github.io/blog/2024/02/26/python/r/julia/ahead-v0100.
-
mlsauce for Python and
mlsauce for R
Miscellaneous Statistical/Machine Learning stuff.
Home of LSBoost:
https://www.researchgate.net/publication/346059361_LSBoost_gradient_boosted_penalized_nonlinear_least_squares
and `GenericBooster`:
https://thierrymoudiki.github.io/blog/2024/10/06/python/r/genericboosting and
https://www.researchgate.net/publication/386212136_Scalable_Gradient_Boosting_using_Randomized_Neural_Networks.
Read https://thierrymoudiki.github.io/blog/2023/11/05/python/r/adaopt/lsboost/mlsauce_classification.
-
GPopt
Bayesian optimization using Gaussian Process Regression (useful for Machine learning hyperparameter tuning).
Read https://thierrymoudiki.github.io/blog/2024/01/29/python/gpopt-new.
-
bcn for Python and
bcn for R
Boosted Configuration (neural) Networks for supervised learning.
Read https://thierrymoudiki.github.io/blog/2022/07/21/r/misc/boosted-configuration-networks
and
https://www.researchgate.net/publication/380760578_Boosted_Configuration_neural_Networks_for_supervised_classification.
-
genbooster
A fast gradient boosting and bagging (RandomBagClassifier) implementation using Rust and Python.
Any base learner can be employed.
See
blog post
and
blog post.
-
unifiedbooster
Unified interface for Gradient Boosted Decision Trees algorithms.
Read https://thierrymoudiki.github.io/blog/2024/08/05/python/r/unibooster
-
teller
Model-agnostic Statistical/Machine Learning explainability.
Read https://thierrymoudiki.github.io/blog/2024/02/19/python/quasirandomizednn/explainableml/nnetsauce-dl-data.
-
querier
A query language for Python Data Frames.
Read https://thierrymoudiki.github.io/blog/2022/06/06/python/lsboost/explainableml/mlsauce/techtonique-workflow.
-
learningmachine for Python and
learningmachine for R.
Machine Learning with uncertainty quantification and interpretability.
Read https://thierrymoudiki.github.io/blog/2024/04/01/python/learningmachine-python
and https://thierrymoudiki.github.io/blog/2024/03/25/r/learningmachine
-
esgtoolkit for R and
esgtoolkit for Python.
A toolkit for Monte Carlo Simulations in Finance, Economics, Insurance, Physics.
Read https://thierrymoudiki.github.io/blog/2023/12/18/r/python/esgtoolkit-python.
-
rtopy
Calling R functions in Python.
Read https://thierrymoudiki.github.io/blog/2024/03/04/python/r/rtopyintro.
-
crossvalidation
Generic R functions for cross-validation.
Read https://thierrymoudiki.github.io/blog/2021/08/06/r/crossvalidation-svm-r.
-
glmnet for python
Lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, poisson regression and the cox model.
Read https://thierrymoudiki.github.io/blog/2024/11/18/python/r/GLMNet-post
-
survivalist
Model-agnostic Survival analysis with Machine Learning and uncertainty quantification.
See https://thierrymoudiki.github.io/blog/2025/02/12/r/R-agnostic-survival-analysis
-
tisthemachinelearner in Python
tisthemachinelearner in R
Lightweight interface to scikit-learn with 2 classes, Classifier and Regressor.
See https://thierrymoudiki.github.io/blog/2025/02/17/python/r/tisthemllearner
-
mlreserving
Machine learning-based probabilistic reserving model for (longitudinal data) insurance claims.
See https://thierrymoudiki.github.io/blog/2025/06/06/python/ml-reserve-advanced-models
-
cybooster
A high-performance generic gradient boosting library (any base learner can be used, randomized at each iteration), built on Cython and GPU-friendly via JAX.
-
synthe
Synthetic data generation