A multi-language development platform for AI-assisted code generation and experimentation
Start here for AIOS development:
- π README.md (this file) - Project overview, features, quick start
- π― DEV_PATH.md - Current development status, active work, tactical roadmap
- ποΈ PROJECT_CONTEXT.md - Strategic context, architectural principles, guidelines
- π docs/ARCHITECTURE_INDEX.md - Complete documentation navigation
Quick Links:
AIOS is a cross-platform development environment that combines multiple programming languages (Python, C++, C#) with AI agent coordination to generate, test, and evolve code automatically. It provides:
- Multi-agent AI coordination - Run multiple AI models (Ollama, Gemini, DeepSeek) in parallel to generate code
- Cross-language integration - Connect Python AI tools with C++ performance code and C# user interfaces
- Code evolution experiments - Automated code generation and quality testing workflows
- Runtime intelligence - 40+ monitoring and diagnostic tools for system health
- Interface bridge - HTTP API that exposes Python AI tools to other languages
Think of it as a laboratory for experimenting with AI-driven software development.
Run three different AI models simultaneously and compare their code outputs:
- Ollama (local) - Fast inference with models like gemma3:1b, codellama:7b
- Gemini (cloud) - Google's AI models via AI Studio API
- DeepSeek (hybrid) - Advanced code analysis via OpenRouter API
from ai.src.evolution.multi_agent_evolution_loop import MultiAgentEvolutionLoop
loop = MultiAgentEvolutionLoop()
result = await loop.human_guided_experiment(
task_description="Write a C++ binary search function",
use_all_agents=True # Run all 3 agents in parallel
)Call Python AI tools from C# or other languages via HTTP API:
# Start the bridge server
python ai/server_manager.py start// Call from C#
var client = new HttpClient();
var response = await client.GetAsync("http://localhost:8000/tools");
var tools = await response.Content.ReadAsStringAsync();Dedicated workspace for AI-generated code experiments:
evolution_lab/experiments/- Generated code outputsevolution_lab/conversations/- Full AI chat logsevolution_lab/neural_chains/- Code evolution history
43 Python tools for system monitoring and optimization:
- System health checks
- Performance monitoring
- Architecture validation
- Code quality analysis
Unified build orchestration across three languages:
- Python: setuptools + pip
- C++: CMake with C++17 standard
- C#: MSBuild with .NET 8.0
- Windows 10/11 with PowerShell 7+
- Python 3.12+
- .NET 8.0 SDK
- CMake 3.20+
- Ollama (optional, for local AI)
# 1. Clone repository
git clone https://github.com/Tecnocrat/AIOS.git
cd AIOS
# 2. Install Python dependencies
python -m venv venv
.\venv\Scripts\activate
pip install -r ai/requirements.txt
# 3. Install Ollama models (optional)
ollama pull gemma3:1b
# 4. Build C++ core (optional)
cd core
cmake -B build -S .
cmake --build build
cd ..
# 5. Build C# UI (optional)
dotnet build AIOS.sln# Test multi-agent code generation
python ai/tests/test_multi_agent_experiment.py
# Check generated code
dir evolution_lab\experiments\
# View AI conversation logs
dir evolution_lab\conversations\AIOS/
βββ ai/ # Python AI coordination layer
β βββ src/
β β βββ evolution/ # Multi-agent code generation
β β β βββ multi_agent_evolution_loop.py (887 lines)
β β βββ intelligence/ # AI agent bridges
β β β βββ ollama_bridge.py (383 lines)
β β β βββ gemini_evolution_bridge.py (417 lines)
β β β βββ deepseek_intelligence_engine.py (598 lines)
β β βββ tools/ # AI utility tools
β βββ orchestration/ # System coordination
β β βββ supercell_orchestrator.py (530 lines)
β β βββ consciousness_coordinator.py (478 lines)
β βββ core/
β β βββ interface_bridge.py # HTTP API server
β βββ tests/ # Test suite
β βββ requirements.txt # Python dependencies (113 packages)
β
βββ core/ # C++ performance engine
β βββ CMakeLists.txt # C++17 build configuration
β βββ src/ # Core C++ implementation
β βββ tests/ # C++ unit tests
β
βββ interface/ # C# user interface layer
β βββ AIOS.UI/ # WPF + WebView2 application
β βββ AIOS.Services/ # Backend services
β βββ AIOS.Models/ # Data models
β βββ AIOS.UI.Diagnostics/ # System diagnostics UI
β
βββ evolution_lab/ # AI experiment workspace
β βββ experiments/ # Generated code outputs
β βββ conversations/ # AI chat logs
β βββ neural_chains/ # Code evolution history
β βββ artifacts/ # Experiment artifacts
β
βββ runtime_intelligence/ # Monitoring tools
β βββ tools/ # 43 diagnostic Python scripts
β
βββ docs/ # Documentation
β βββ ARCHITECTURE_INDEX.md # Navigation hub
β βββ CHANGELOG.md # Development history
β βββ development/ # Development guides
β
βββ tachyonic/ # Historical archives
βββ archive/ # Preserved experiments and logs
AIOS is organized as a modular multi-language system with three main layers:
- Purpose: Coordinate AI agents, generate code, run experiments
- Components:
- Multi-agent orchestrator (887 lines)
- AI bridges for Ollama, Gemini, DeepSeek
- Interface bridge HTTP API
- Runtime intelligence tools
- Key Files:
ai/src/evolution/,ai/orchestration/
- Purpose: High-performance computation and system core
- Components:
- CMake build system (C++17)
- Core engine libraries
- Threading and concurrency support
- Key Files:
core/CMakeLists.txt,core/src/
- Purpose: GUI for system interaction and monitoring
- Components:
- WPF application with WebView2 integration
- Service layer for backend coordination
- Diagnostic tools and visualizations
- Key Files:
interface/AIOS.UI/,interface/AIOS.Services/
βββββββββββββββ HTTP API βββββββββββββββ
β C# UI β βββββββββββββββββββΊ β Python β
β (WPF GUI) β (port 8000) β (AI Tools) β
βββββββββββββββ βββββββββββββββ
β
β pybind11
βΌ
βββββββββββββββ
β C++ β
β (Engine) β
βββββββββββββββ
AIOS uses some specialized terminology. Here's what it means:
A system for generating code from natural language descriptions. Instead of writing code manually, you describe what you want, and AI agents generate implementation options.
Example: "Write a C++ function that sorts an array using quicksort" β AI generates the code
An organizational metaphor where software components are treated like biological cells:
- Supercell = Independent component/module with standard interfaces
- Dendritic communication = Message passing between components (like brain neurons)
- Consciousness level = Code quality metric (0.0 to 1.0 scale) measuring coherence and completeness
This is just an organizational pattern - it doesn't mean the code is "alive" or has real consciousness.
A dedicated directory (evolution_lab/) where AI-generated code experiments are stored:
- Each experiment gets a timestamp and unique ID
- Conversation logs show AI reasoning
- Multiple iterations can be compared
Historical storage directory (tachyonic/archive/) for preserving:
- Past experiment results
- Conversation metadata
- Evolution history
- Genetic algorithm data
Think of it as a time-capsule for past work.
An HTTP server (ai/core/interface_bridge.py) that exposes Python AI tools as REST endpoints, allowing C# or JavaScript to call Python functions remotely.
from ai.src.evolution.multi_agent_evolution_loop import MultiAgentEvolutionLoop
async def generate_code():
loop = MultiAgentEvolutionLoop(use_ollama=True)
result = await loop.human_guided_experiment(
task_description="Write a Python function to calculate fibonacci numbers",
agent_type="ollama"
)
print(f"Generated code: {result['output_path']}")
print(f"AI conversation: {result['conversation_path']}")
print(f"Quality score: {result['fitness_score']}")
# Run it
import asyncio
asyncio.run(generate_code())async def compare_agents():
loop = MultiAgentEvolutionLoop()
result = await loop.human_guided_experiment(
task_description="Implement binary search in C++",
use_all_agents=True # Run Ollama + Gemini + DeepSeek
)
for agent_name, agent_result in result['results'].items():
print(f"\n{agent_name}:")
print(f" Code: {agent_result['output_path']}")
print(f" Quality: {agent_result['fitness_score']}")
print(f" Time: {agent_result['processing_time']}s")
asyncio.run(compare_agents())# Terminal 1: Start Python server
python ai/server_manager.py start
# Server running at http://localhost:8000// C# client code
using System.Net.Http;
using System.Threading.Tasks;
public class AIToolClient
{
private static HttpClient client = new HttpClient();
public static async Task<string> GetAvailableTools()
{
var response = await client.GetAsync("http://localhost:8000/tools");
return await response.Content.ReadAsStringAsync();
}
public static async Task<string> RunAIAnalysis(string toolName)
{
var response = await client.GetAsync($"http://localhost:8000/tools/{toolName}");
return await response.Content.ReadAsStringAsync();
}
}
// Usage
var tools = await AIToolClient.GetAvailableTools();
Console.WriteLine($"Available AI tools: {tools}");
var result = await AIToolClient.RunAIAnalysis("ainlp_governance");
Console.WriteLine($"Analysis result: {result}");Ollama (Local AI):
# Install Ollama: https://ollama.com/
# Pull models
ollama pull gemma3:1b # 2GB, fast
ollama pull codellama:7b # 4GB, better code
ollama pull deepseek-coder:6.7b # 5GB, best code analysisGemini (Cloud AI):
# Get API key from: https://aistudio.google.com/
$env:GOOGLE_API_KEY = "your_api_key_here"
$env:GEMINI_MODEL = "gemini-2.5-flash" # optionalDeepSeek (Cloud AI):
# Get API key from: https://openrouter.ai/
$env:OPENROUTER_API_KEY = "your_api_key_here"Python:
- Dependencies:
ai/requirements.txt(113 packages) - Virtual environment recommended:
python -m venv venv
C++:
- Standard: C++17
- Build system: CMake 3.20+
- Threading:
find_package(Threads REQUIRED)
C#:
- Framework: .NET 8.0
- UI: WPF + WebView2
- Build:
dotnet build AIOS.sln
# Python tests
cd ai
python -m pytest tests/ -v
# Multi-agent experiments
python tests/test_multi_agent_experiment.py
# C++ tests (after build)
cd core/build
ctest --output-on-failure
# C# tests
dotnet test AIOS.sln# Interface Bridge (Python HTTP API)
python ai/server_manager.py start
# C# UI Application
dotnet run --project interface/AIOS.UI/AIOS.UI.csproj
# System health check
python runtime_intelligence/tools/system_health_check.py# List recent experiments
dir evolution_lab\experiments\ | Sort-Object LastWriteTime | Select-Object -Last 5
# View AI conversation logs
Get-Content evolution_lab\conversations\conversation_<timestamp>.json | ConvertFrom-Json
# Check evolution history
dir evolution_lab\neural_chains\- DEV_PATH.md - Current development status, active work tracking, tactical roadmap (1815 lines)
- PROJECT_CONTEXT.md - Strategic context, architectural principles, development guidelines
- README.md - This file: project overview, quick start, usage examples
- Architecture Index - System architecture overview and complete documentation navigation hub
- Multi-Agent Guide - Complete multi-agent implementation details
- Changelog - Development history and version information
- Orchestration Guide - Component coordination patterns (30KB, 10 sections)
- Integration Report - 8-phase refactoring history
- Core Optimization - Performance optimization strategies
- Code Archival System - Knowledge preservation methodology
- API Reference - Component interfaces and integration patterns
- Tools Index - Runtime intelligence tools catalog
- Quick Reference - Fast lookup for common operations
- OS: Windows 10 (64-bit) or Windows 11
- RAM: 8 GB (16 GB recommended for Ollama)
- Storage: 10 GB free space (20 GB with all AI models)
- CPU: Multi-core processor (4+ cores recommended)
- Python: 3.12.8 or higher
- .NET SDK: 8.0 or higher
- CMake: 3.20 or higher
- PowerShell: 7.0 or higher
- Ollama: Latest version (optional, for local AI)
- Google AI Studio: For Gemini API access (free tier available)
- OpenRouter: For DeepSeek API access (paid service)
Issue: Ollama models not found
# Solution: Pull the model first
ollama pull gemma3:1b
ollama list # Verify it's installedIssue: Interface bridge won't start
# Solution: Check if port 8000 is in use
netstat -ano | findstr :8000
# Kill process if needed, then restart:
python ai/server_manager.py restartIssue: C++ build fails
# Solution: Verify CMake and compiler installation
cmake --version # Should be 3.20+
# On Windows, install Visual Studio Build ToolsIssue: Python import errors
# Solution: Activate virtual environment and reinstall
.\venv\Scripts\activate
pip install -r ai/requirements.txt- Code Style:
- Python: Black formatter, PEP 8
- C#: dotnet format
- C++: Clang-format
- Testing: Write unit tests for new features
- Documentation: Update relevant docs with changes
- Commits: Clear, descriptive commit messages
- Fork the repository
- Create feature branch:
git checkout -b feature/my-feature - Make changes and test thoroughly
- Update documentation
- Submit pull request with description of changes
- Check Documentation Index first
- Review Development Guide
- Look at existing issues
Active Components β :
- Multi-agent AI coordination (Ollama, Gemini, DeepSeek)
- Interface bridge HTTP API (50+ tools)
- Evolution Lab experiment workspace
- Runtime intelligence monitoring (43 tools)
- C# UI with WPF + WebView2
- Python test suite
In Development π§:
- Genetic algorithm integration
- Visual consciousness tracking dashboard
- Automated feedback loops
- Production deployment pipeline
Roadmap πΊοΈ:
- Agent-to-agent direct communication
- Real-time code evolution visualization
- Expanded AI model support
- Cross-platform (Linux, macOS)
See Changelog for detailed development history.
Proprietary License - This project is proprietary research software. See LICENSE file for details.
AIOS is a research platform for exploring AI-assisted software development, multi-agent coordination, and code evolution techniques. It builds on open-source tools and AI models from:
- Ollama - Local AI inference
- Google Gemini - Cloud AI models
- OpenRouter - AI model aggregation
AIOS - Advancing AI-assisted development through multi-agent coordination and code evolution.
For questions, issues, or contributions, see our documentation or contact the development team.