Skip to content

“Customized OpenCLIP Tokenizer” #5

@Vaspory

Description

@Vaspory

import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image

⚠️ Use our repo's tokenizer implementation at src/convert_upload/open_clip/

from open_clip import create_model_from_pretrained, get_tokenizer

model, preprocess = create_model_from_pretrained('hf-hub:UCSC-VLAA/openvision-vit-large-patch14-224')
tokenizer = get_tokenizer('hf-hub:UCSC-VLAA/openvision-vit-large-patch14-224')

image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)

text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length)

with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)

text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]]

src/convert_upload/open_clip/

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions