Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions src/chronos/chronos2/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,10 +40,10 @@ class Chronos2Pipeline(BaseChronosPipeline):
forecast_type: ForecastType = ForecastType.QUANTILES
default_context_length: int = 2048

def __init__(self, model: Chronos2Model):
def __init__(self, model: Chronos2Model, revision: str | None = None):
super().__init__(inner_model=model)
self.model = model

self.revision = revision
@staticmethod
def _get_prob_mass_per_quantile_level(quantile_levels: torch.Tensor) -> torch.Tensor:
"""
Expand Down Expand Up @@ -195,6 +195,7 @@ def fit(
model.load_state_dict(self.model.state_dict())

if finetune_mode == "lora":
lora_revision = self.revision
if lora_config is None:
lora_config = LoraConfig(
r=8,
Expand All @@ -206,8 +207,10 @@ def fit(
"self_attention.o",
"output_patch_embedding.output_layer",
],
revision=lora_revision,
)
elif isinstance(lora_config, dict):
lora_config.setdefault("revision", lora_revision)
lora_config = LoraConfig(**lora_config)
else:
assert isinstance(lora_config, LoraConfig), (
Expand Down Expand Up @@ -1161,6 +1164,7 @@ def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
Load the model, either from a local path, S3 prefix or from the HuggingFace Hub.
Supports the same arguments as ``AutoConfig`` and ``AutoModel`` from ``transformers``.
"""
revision = kwargs.get("revision")

# Check if the model is on S3 and cache it locally first
# NOTE: Only base models (not LoRA adapters) are supported via S3
Expand All @@ -1178,7 +1182,7 @@ def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):

model = AutoPeftModel.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
model = model.merge_and_unload()
return cls(model=model)
return cls(model=model, revision=revision)

# Handle the case for the base model
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
Expand All @@ -1192,7 +1196,7 @@ def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
class_ = Chronos2Model

model = class_.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
return cls(model=model)
return cls(model=model, revision=revision)

def save_pretrained(self, save_directory: str | Path, *args, **kwargs):
"""
Expand Down
35 changes: 35 additions & 0 deletions test/test_chronos2.py
Original file line number Diff line number Diff line change
Expand Up @@ -1132,3 +1132,38 @@ def test_eager_and_sdpa_produce_identical_outputs(pipeline):
for out_eager, out_sdpa in zip(outputs_eager_grouped, outputs_sdpa_grouped):
# Should match exactly or very close (numerical precision)
assert torch.allclose(out_eager, out_sdpa, atol=1e-5, rtol=1e-4)


@pytest.mark.parametrize("source_revision", ["my-test-branch", None])
def test_lora_config_uses_source_revision_from_instantiation(
pipeline: Chronos2Pipeline, tmpdir, source_revision
):
"""
Test that fit in 'lora' mode correctly uses the 'revision'
stored in the pipeline instance.
"""
output_dir = Path(tmpdir)
dummy_inputs = [torch.rand(100)]

pipeline.revision = source_revision

pipeline.fit(
inputs=dummy_inputs,
prediction_length=10,
finetune_mode="lora",
output_dir=output_dir,
num_steps=1, # Keep it fast
batch_size=32,
)

adapter_config_path = output_dir / "finetuned-ckpt" / "adapter_config.json"
assert adapter_config_path.exists(), "adapter_config.json was not created"

with open(adapter_config_path, "r") as f:
adapter_config = json.load(f)

if source_revision is not None:
assert "revision" in adapter_config
assert adapter_config["revision"] == source_revision
else:
assert "revision" not in adapter_config or adapter_config["revision"] is None