Skip to content

aoffenbek/vendor-invoice-matching

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vendor Invoice Matching & Anomaly Detection

Overview

This project aims to match vendor invoices with purchase orders (POs) and detect anomalies using NLP and anomaly detection techniques.

  • Automated Invoice Matching using text similarity methods (TF-IDF, Levenshtein, BERT).
  • Fraud & Anomaly Detection using machine learning models (Isolation Forest, Autoencoders).
  • Data Visualization using Streamlit and Matplotlib.

Project Structure

  • data/ - Contains the dataset (synthetic_vendor_invoices.csv).
  • notebooks/ - Jupyter Notebooks for data preprocessing & model development.
  • src/ - Python scripts for dataset generation, matching, and anomaly detection.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published