This project aims to match vendor invoices with purchase orders (POs) and detect anomalies using NLP and anomaly detection techniques.
- Automated Invoice Matching using text similarity methods (TF-IDF, Levenshtein, BERT).
- Fraud & Anomaly Detection using machine learning models (Isolation Forest, Autoencoders).
- Data Visualization using Streamlit and Matplotlib.
data/- Contains the dataset (synthetic_vendor_invoices.csv).notebooks/- Jupyter Notebooks for data preprocessing & model development.src/- Python scripts for dataset generation, matching, and anomaly detection.