Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
move unit test to tests.py
  • Loading branch information
zjffdu committed Sep 29, 2017
commit fbbcd263c32a008873c7f080e5abadf1c01fa006
11 changes: 4 additions & 7 deletions python/pyspark/mllib/fpm.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,16 +36,13 @@ class FPGrowthModel(JavaModelWrapper, JavaSaveable, JavaLoader):

>>> data = [["a", "b", "c"], ["a", "b", "d", "e"], ["a", "c", "e"], ["a", "c", "f"]]
>>> rdd = sc.parallelize(data, 2)
>>> model1 = FPGrowth.train(rdd, 0.6, 2)
>>> model2 = FPGrowth.train(rdd, 0.6)
>>> sorted(model1.freqItemsets().collect())
[FreqItemset(items=[u'a'], freq=4), FreqItemset(items=[u'c'], freq=3), ...
>>> sorted(model2.freqItemsets().collect())
>>> model = FPGrowth.train(rdd, 0.6, 2)
>>> sorted(model.freqItemsets().collect())
[FreqItemset(items=[u'a'], freq=4), FreqItemset(items=[u'c'], freq=3), ...
>>> model_path = temp_path + "/fpm"
>>> model1.save(sc, model_path)
>>> model.save(sc, model_path)
>>> sameModel = FPGrowthModel.load(sc, model_path)
>>> sorted(model1.freqItemsets().collect()) == sorted(sameModel.freqItemsets().collect())
>>> sorted(model.freqItemsets().collect()) == sorted(sameModel.freqItemsets().collect())
True

.. versionadded:: 1.4.0
Expand Down
12 changes: 12 additions & 0 deletions python/pyspark/mllib/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
DenseMatrix, SparseMatrix, Vectors, Matrices, MatrixUDT
from pyspark.mllib.linalg.distributed import RowMatrix
from pyspark.mllib.classification import StreamingLogisticRegressionWithSGD
from pyspark.mllib.fpm import FPGrowth
from pyspark.mllib.recommendation import Rating
from pyspark.mllib.regression import LabeledPoint, StreamingLinearRegressionWithSGD
from pyspark.mllib.random import RandomRDDs
Expand Down Expand Up @@ -1762,6 +1763,17 @@ def test_pca(self):
self.assertEqualUpToSign(pcs.toArray()[:, k - 1], expected_pcs[:, k - 1])


class FPGrowthTest(MLlibTestCase):

def test_fpgrowth(self):
data = [["a", "b", "c"], ["a", "b", "d", "e"], ["a", "c", "e"], ["a", "c", "f"]]
rdd = self.sc.parallelize(data, 2)
model1 = FPGrowth.train(rdd, 0.6, 2)
# use default data partition number when numPartitions is not specified
model2 = FPGrowth.train(rdd, 0.6)
self.assertEqual(sorted(model1.freqItemsets().collect()),
sorted(model2.freqItemsets().collect()))

if __name__ == "__main__":
from pyspark.mllib.tests import *
if not _have_scipy:
Expand Down