Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -289,35 +289,15 @@ object BisectingKMeans extends DefaultParamsReadable[BisectingKMeans] {
* :: Experimental ::
* Summary of BisectingKMeans.
*
* @param predictions [[DataFrame]] produced by [[BisectingKMeansModel.transform()]]
* @param predictionCol Name for column of predicted clusters in `predictions`
* @param featuresCol Name for column of features in `predictions`
* @param k Number of clusters
* @param predictions [[DataFrame]] produced by [[BisectingKMeansModel.transform()]].
* @param predictionCol Name for column of predicted clusters in `predictions`.
* @param featuresCol Name for column of features in `predictions`.
* @param k Number of clusters.
*/
@Since("2.1.0")
@Experimental
class BisectingKMeansSummary private[clustering] (
@Since("2.1.0") @transient val predictions: DataFrame,
@Since("2.1.0") val predictionCol: String,
@Since("2.1.0") val featuresCol: String,
@Since("2.1.0") val k: Int) extends Serializable {

/**
* Cluster centers of the transformed data.
*/
@Since("2.1.0")
@transient lazy val cluster: DataFrame = predictions.select(predictionCol)

/**
* Size of (number of data points in) each cluster.
*/
@Since("2.1.0")
lazy val clusterSizes: Array[Long] = {
val sizes = Array.fill[Long](k)(0)
cluster.groupBy(predictionCol).count().select(predictionCol, "count").collect().foreach {
case Row(cluster: Int, count: Long) => sizes(cluster) = count
}
sizes
}

}
predictions: DataFrame,
predictionCol: String,
featuresCol: String,
k: Int) extends ClusteringSummary(predictions, predictionCol, featuresCol, k)
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.clustering

import org.apache.spark.annotation.Experimental
import org.apache.spark.sql.{DataFrame, Row}

/**
* :: Experimental ::
* Summary of clustering algorithms.
*
* @param predictions [[DataFrame]] produced by model.transform().
* @param predictionCol Name for column of predicted clusters in `predictions`.
* @param featuresCol Name for column of features in `predictions`.
* @param k Number of clusters.
*/
@Experimental
class ClusteringSummary private[clustering] (
@transient val predictions: DataFrame,
val predictionCol: String,
val featuresCol: String,
val k: Int) extends Serializable {

/**
* Cluster centers of the transformed data.
*/
@transient lazy val cluster: DataFrame = predictions.select(predictionCol)

/**
* Size of (number of data points in) each cluster.
*/
lazy val clusterSizes: Array[Long] = {
val sizes = Array.fill[Long](k)(0)
cluster.groupBy(predictionCol).count().select(predictionCol, "count").collect().foreach {
case Row(cluster: Int, count: Long) => sizes(cluster) = count
}
sizes
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -356,42 +356,25 @@ object GaussianMixture extends DefaultParamsReadable[GaussianMixture] {
* :: Experimental ::
* Summary of GaussianMixture.
*
* @param predictions [[DataFrame]] produced by [[GaussianMixtureModel.transform()]]
* @param predictionCol Name for column of predicted clusters in `predictions`
* @param probabilityCol Name for column of predicted probability of each cluster in `predictions`
* @param featuresCol Name for column of features in `predictions`
* @param k Number of clusters
* @param predictions [[DataFrame]] produced by [[GaussianMixtureModel.transform()]].
* @param predictionCol Name for column of predicted clusters in `predictions`.
* @param probabilityCol Name for column of predicted probability of each cluster
* in `predictions`.
* @param featuresCol Name for column of features in `predictions`.
* @param k Number of clusters.
*/
@Since("2.0.0")
@Experimental
class GaussianMixtureSummary private[clustering] (
@Since("2.0.0") @transient val predictions: DataFrame,
@Since("2.0.0") val predictionCol: String,
predictions: DataFrame,
predictionCol: String,
@Since("2.0.0") val probabilityCol: String,
@Since("2.0.0") val featuresCol: String,
@Since("2.0.0") val k: Int) extends Serializable {

/**
* Cluster centers of the transformed data.
*/
@Since("2.0.0")
@transient lazy val cluster: DataFrame = predictions.select(predictionCol)
featuresCol: String,
k: Int) extends ClusteringSummary(predictions, predictionCol, featuresCol, k) {

/**
* Probability of each cluster.
*/
@Since("2.0.0")
@transient lazy val probability: DataFrame = predictions.select(probabilityCol)

/**
* Size of (number of data points in) each cluster.
*/
@Since("2.0.0")
lazy val clusterSizes: Array[Long] = {
val sizes = Array.fill[Long](k)(0)
cluster.groupBy(predictionCol).count().select(predictionCol, "count").collect().foreach {
case Row(cluster: Int, count: Long) => sizes(cluster) = count
}
sizes
}
}
36 changes: 8 additions & 28 deletions mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala
Original file line number Diff line number Diff line change
Expand Up @@ -346,35 +346,15 @@ object KMeans extends DefaultParamsReadable[KMeans] {
* :: Experimental ::
* Summary of KMeans.
*
* @param predictions [[DataFrame]] produced by [[KMeansModel.transform()]]
* @param predictionCol Name for column of predicted clusters in `predictions`
* @param featuresCol Name for column of features in `predictions`
* @param k Number of clusters
* @param predictions [[DataFrame]] produced by [[KMeansModel.transform()]].
* @param predictionCol Name for column of predicted clusters in `predictions`.
* @param featuresCol Name for column of features in `predictions`.
* @param k Number of clusters.
*/
@Since("2.0.0")
@Experimental
class KMeansSummary private[clustering] (
@Since("2.0.0") @transient val predictions: DataFrame,
@Since("2.0.0") val predictionCol: String,
@Since("2.0.0") val featuresCol: String,
@Since("2.0.0") val k: Int) extends Serializable {

/**
* Cluster centers of the transformed data.
*/
@Since("2.0.0")
@transient lazy val cluster: DataFrame = predictions.select(predictionCol)

/**
* Size of (number of data points in) each cluster.
*/
@Since("2.0.0")
lazy val clusterSizes: Array[Long] = {
val sizes = Array.fill[Long](k)(0)
cluster.groupBy(predictionCol).count().select(predictionCol, "count").collect().foreach {
case Row(cluster: Int, count: Long) => sizes(cluster) = count
}
sizes
}

}
predictions: DataFrame,
predictionCol: String,
featuresCol: String,
k: Int) extends ClusteringSummary(predictions, predictionCol, featuresCol, k)