Skip to content
Closed
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,8 @@

import org.apache.spark.ml.feature.MinHashLSH;
import org.apache.spark.ml.feature.MinHashLSHModel;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
Expand All @@ -45,49 +44,25 @@ public static void main(String[] args) {
.getOrCreate();

// $example on$
List<Row> dataA = Arrays.asList(
RowFactory.create(0, Vectors.sparse(6, new int[]{0, 1, 2}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(1, Vectors.sparse(6, new int[]{2, 3, 4}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(2, Vectors.sparse(6, new int[]{0, 2, 4}, new double[]{1.0, 1.0, 1.0}))
);

List<Row> dataB = Arrays.asList(
RowFactory.create(3, Vectors.sparse(6, new int[]{1, 3, 5}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(4, Vectors.sparse(6, new int[]{2, 3, 5}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(5, Vectors.sparse(6, new int[]{1, 2, 4}, new double[]{1.0, 1.0, 1.0}))
List<Row> data = Arrays.asList(
RowFactory.create(0, Vectors.sparse(6, new int[]{0, 1, 2}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(1, Vectors.sparse(6, new int[]{2, 3, 4}, new double[]{1.0, 1.0, 1.0})),
RowFactory.create(2, Vectors.sparse(6, new int[]{0, 2, 4}, new double[]{1.0, 1.0, 1.0}))
);

StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("keys", new VectorUDT(), false, Metadata.empty())
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("keys", new VectorUDT(), false, Metadata.empty())
});
Dataset<Row> dfA = spark.createDataFrame(dataA, schema);
Dataset<Row> dfB = spark.createDataFrame(dataB, schema);

Vector key = Vectors.sparse(6, new int[]{1, 3}, new double[]{1.0, 1.0, 1.0});
Dataset<Row> dataFrame = spark.createDataFrame(data, schema);

MinHashLSH mh = new MinHashLSH()
.setNumHashTables(3)
.setInputCol("keys")
.setOutputCol("values");

MinHashLSHModel model = mh.fit(dfA);

// Feature Transformation
model.transform(dfA).show();
// Cache the transformed columns
Dataset<Row> transformedA = model.transform(dfA).cache();
Dataset<Row> transformedB = model.transform(dfB).cache();

// Approximate similarity join
model.approxSimilarityJoin(dfA, dfB, 0.6).show();
model.approxSimilarityJoin(transformedA, transformedB, 0.6).show();
// Self Join
model.approxSimilarityJoin(dfA, dfA, 0.6).filter("datasetA.id < datasetB.id").show();
.setNumHashTables(1)
.setInputCol("keys")
.setOutputCol("values");

// Approximate nearest neighbor search
model.approxNearestNeighbors(dfA, key, 2).show();
model.approxNearestNeighbors(transformedA, key, 2).show();
MinHashLSHModel model = mh.fit(dataFrame);
model.transform(dataFrame).show();
// $example off$

spark.stop();
Expand Down