Skip to content

Conversation

@tdas
Copy link
Contributor

@tdas tdas commented Nov 15, 2016

What changes were proposed in this pull request?

SPARK-18012 refactored the file write path in FileStreamSink using FileFormatWriter which always uses the default non-streaming QueryExecution to perform the writes. This is wrong for FileStreamSink, because the streaming QueryExecution (i.e. IncrementalExecution) should be used for correctly incrementalizing aggregation. The addition of watermarks in SPARK-18124, file stream sink should logically supports aggregation + watermark + append mode. But actually it fails with

16:23:07.389 ERROR org.apache.spark.sql.execution.streaming.StreamExecution: Query query-0 terminated with error
java.lang.AssertionError: assertion failed: No plan for EventTimeWatermark timestamp#7: timestamp, interval 10 seconds
+- LocalRelation [timestamp#7]

	at scala.Predef$.assert(Predef.scala:170)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
	at scala.collection.Iterator$class.foreach(Iterator.scala:893)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
	at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
	at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:74)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:66)
	at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
	at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)

This PR fixes it by passing the correct query execution.

How was this patch tested?

New unit test

import testImplicits._

test("FileStreamSink - unpartitioned writing and batch reading") {
test("unpartitioned writing and batch reading") {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Removed the unnecessary common prefix

@tdas
Copy link
Contributor Author

tdas commented Nov 15, 2016

@marmbrus @rxin Can you take a look?

@SparkQA
Copy link

SparkQA commented Nov 15, 2016

Test build #68643 has finished for PR 15885 at commit 337ef01.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

*/
def write(
sparkSession: SparkSession,
plan: LogicalPlan,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

we shouldn't need the plan here do we?

testFormat(Some("json"))
}

test("aggregation + watermark + append mode") {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

maybe write some comment explaining what this is testing?

@SparkQA
Copy link

SparkQA commented Nov 15, 2016

Test build #68670 has finished for PR 15885 at commit 0b519f8.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@marmbrus
Copy link
Contributor

LGTM, merging to master and 2.1

asfgit pushed a commit that referenced this pull request Nov 15, 2016
…ileFormatWriter

## What changes were proposed in this pull request?

SPARK-18012 refactored the file write path in FileStreamSink using FileFormatWriter which always uses the default non-streaming QueryExecution to perform the writes. This is wrong for FileStreamSink, because the streaming QueryExecution (i.e. IncrementalExecution) should be used for correctly incrementalizing aggregation. The addition of watermarks in SPARK-18124, file stream sink should logically supports aggregation + watermark + append mode. But actually it fails with
```
16:23:07.389 ERROR org.apache.spark.sql.execution.streaming.StreamExecution: Query query-0 terminated with error
java.lang.AssertionError: assertion failed: No plan for EventTimeWatermark timestamp#7: timestamp, interval 10 seconds
+- LocalRelation [timestamp#7]

	at scala.Predef$.assert(Predef.scala:170)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
	at scala.collection.Iterator$class.foreach(Iterator.scala:893)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
	at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
	at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:74)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:66)
	at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
	at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
```

This PR fixes it by passing the correct query execution.

## How was this patch tested?
New unit test

Author: Tathagata Das <[email protected]>

Closes #15885 from tdas/SPARK-18440.

(cherry picked from commit 1ae4652)
Signed-off-by: Michael Armbrust <[email protected]>
@asfgit asfgit closed this in 1ae4652 Nov 15, 2016
@SparkQA
Copy link

SparkQA commented Nov 16, 2016

Test build #68676 has finished for PR 15885 at commit 08c71c1.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

uzadude pushed a commit to uzadude/spark that referenced this pull request Jan 27, 2017
…ileFormatWriter

## What changes were proposed in this pull request?

SPARK-18012 refactored the file write path in FileStreamSink using FileFormatWriter which always uses the default non-streaming QueryExecution to perform the writes. This is wrong for FileStreamSink, because the streaming QueryExecution (i.e. IncrementalExecution) should be used for correctly incrementalizing aggregation. The addition of watermarks in SPARK-18124, file stream sink should logically supports aggregation + watermark + append mode. But actually it fails with
```
16:23:07.389 ERROR org.apache.spark.sql.execution.streaming.StreamExecution: Query query-0 terminated with error
java.lang.AssertionError: assertion failed: No plan for EventTimeWatermark timestamp#7: timestamp, interval 10 seconds
+- LocalRelation [timestamp#7]

	at scala.Predef$.assert(Predef.scala:170)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
	at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
	at scala.collection.Iterator$class.foreach(Iterator.scala:893)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
	at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
	at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1336)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:74)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:66)
	at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
	at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:92)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:77)
	at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:74)
```

This PR fixes it by passing the correct query execution.

## How was this patch tested?
New unit test

Author: Tathagata Das <[email protected]>

Closes apache#15885 from tdas/SPARK-18440.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants