Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Added outlierRatio arg to MLTestingUtils.testOutliersWithSmallWeights
  • Loading branch information
jkbradley committed Apr 1, 2017
commit 390233aa2719956832e7ae6253fabef2c8bd6953
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ class LinearSVCSuite extends SparkFunSuite with MLlibTestSparkContext with Defau
MLTestingUtils.testArbitrarilyScaledWeights[LinearSVCModel, LinearSVC](
dataset.as[LabeledPoint], estimator, modelEquals)
MLTestingUtils.testOutliersWithSmallWeights[LinearSVCModel, LinearSVC](
dataset.as[LabeledPoint], estimator, 2, modelEquals)
dataset.as[LabeledPoint], estimator, 2, modelEquals, outlierRatio = 3)
MLTestingUtils.testOversamplingVsWeighting[LinearSVCModel, LinearSVC](
dataset.as[LabeledPoint], estimator, modelEquals, 42L)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1874,7 +1874,7 @@ class LogisticRegressionSuite
MLTestingUtils.testArbitrarilyScaledWeights[LogisticRegressionModel, LogisticRegression](
dataset.as[LabeledPoint], estimator, modelEquals)
MLTestingUtils.testOutliersWithSmallWeights[LogisticRegressionModel, LogisticRegression](
dataset.as[LabeledPoint], estimator, numClasses, modelEquals)
dataset.as[LabeledPoint], estimator, numClasses, modelEquals, outlierRatio = 3)
MLTestingUtils.testOversamplingVsWeighting[LogisticRegressionModel, LogisticRegression](
dataset.as[LabeledPoint], estimator, modelEquals, seed)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,7 @@ class NaiveBayesSuite extends SparkFunSuite with MLlibTestSparkContext with Defa
MLTestingUtils.testArbitrarilyScaledWeights[NaiveBayesModel, NaiveBayes](
dataset.as[LabeledPoint], estimatorNoSmoothing, modelEquals)
MLTestingUtils.testOutliersWithSmallWeights[NaiveBayesModel, NaiveBayes](
dataset.as[LabeledPoint], estimatorWithSmoothing, numClasses, modelEquals)
dataset.as[LabeledPoint], estimatorWithSmoothing, numClasses, modelEquals, outlierRatio = 3)
MLTestingUtils.testOversamplingVsWeighting[NaiveBayesModel, NaiveBayes](
dataset.as[LabeledPoint], estimatorWithSmoothing, modelEquals, seed)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -842,7 +842,8 @@ class LinearRegressionSuite
MLTestingUtils.testArbitrarilyScaledWeights[LinearRegressionModel, LinearRegression](
datasetWithStrongNoise.as[LabeledPoint], estimator, modelEquals)
MLTestingUtils.testOutliersWithSmallWeights[LinearRegressionModel, LinearRegression](
datasetWithStrongNoise.as[LabeledPoint], estimator, numClasses, modelEquals)
datasetWithStrongNoise.as[LabeledPoint], estimator, numClasses, modelEquals,
outlierRatio = 3)
MLTestingUtils.testOversamplingVsWeighting[LinearRegressionModel, LinearRegression](
datasetWithStrongNoise.as[LabeledPoint], estimator, modelEquals, seed)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -260,12 +260,13 @@ object MLTestingUtils extends SparkFunSuite {
data: Dataset[LabeledPoint],
estimator: E with HasWeightCol,
numClasses: Int,
modelEquals: (M, M) => Unit): Unit = {
modelEquals: (M, M) => Unit,
outlierRatio: Int): Unit = {
import data.sqlContext.implicits._
val outlierDS = data.withColumn("weight", lit(1.0)).as[Instance].flatMap {
case Instance(l, w, f) =>
val outlierLabel = if (numClasses == 0) -l else numClasses - l - 1
List.fill(3)(Instance(outlierLabel, 0.0001, f)) ++ List(Instance(l, w, f))
List.fill(outlierRatio)(Instance(outlierLabel, 0.0001, f)) ++ List(Instance(l, w, f))
}
val trueModel = estimator.set(estimator.weightCol, "").fit(data)
val outlierModel = estimator.set(estimator.weightCol, "weight").fit(outlierDS)
Expand Down