Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -32,12 +32,12 @@ import org.apache.spark.util.Utils
* :: Experimental ::
* Maps a sequence of terms to their term frequencies using the hashing trick.
*
* @param numFeatures number of features (default: 1000000)
* @param numFeatures number of features (default: 2^20^)
*/
@Experimental
class HashingTF(val numFeatures: Int) extends Serializable {

def this() = this(1000000)
def this() = this(1 << 20)

/**
* Returns the index of the input term.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,11 @@ package org.apache.spark.mllib.feature

import breeze.linalg.{DenseVector => BDV, SparseVector => BSV}

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.annotation.Experimental
import org.apache.spark.mllib.linalg.{Vector, Vectors}

/**
* :: DeveloperApi ::
* :: Experimental ::
* Normalizes samples individually to unit L^p^ norm
*
* For any 1 <= p < Double.PositiveInfinity, normalizes samples using
Expand All @@ -33,7 +33,7 @@ import org.apache.spark.mllib.linalg.{Vector, Vectors}
*
* @param p Normalization in L^p^ space, p = 2 by default.
*/
@DeveloperApi
@Experimental
class Normalizer(p: Double) extends VectorTransformer {

def this() = this(2)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,22 +19,22 @@ package org.apache.spark.mllib.feature

import breeze.linalg.{DenseVector => BDV, SparseVector => BSV, Vector => BV}

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.annotation.Experimental
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.rdd.RDDFunctions._
import org.apache.spark.mllib.stat.MultivariateOnlineSummarizer
import org.apache.spark.rdd.RDD

/**
* :: DeveloperApi ::
* :: Experimental ::
* Standardizes features by removing the mean and scaling to unit variance using column summary
* statistics on the samples in the training set.
*
* @param withMean False by default. Centers the data with mean before scaling. It will build a
* dense output, so this does not work on sparse input and will raise an exception.
* @param withStd True by default. Scales the data to unit standard deviation.
*/
@DeveloperApi
@Experimental
class StandardScaler(withMean: Boolean, withStd: Boolean) extends VectorTransformer {

def this() = this(false, true)
Expand Down
19 changes: 17 additions & 2 deletions mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,9 @@

package org.apache.spark.mllib.feature

import java.lang.{Iterable => JavaIterable}

import scala.collection.JavaConverters._
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

Expand All @@ -25,6 +28,7 @@ import com.github.fommil.netlib.BLAS.{getInstance => blas}
import org.apache.spark.Logging
import org.apache.spark.SparkContext._
import org.apache.spark.annotation.Experimental
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.rdd.RDDFunctions._
import org.apache.spark.rdd._
Expand Down Expand Up @@ -239,7 +243,7 @@ class Word2Vec extends Serializable with Logging {
a += 1
}
}

/**
* Computes the vector representation of each word in vocabulary.
* @param dataset an RDD of words
Expand Down Expand Up @@ -369,11 +373,22 @@ class Word2Vec extends Serializable with Logging {

new Word2VecModel(word2VecMap.toMap)
}

/**
* Computes the vector representation of each word in vocabulary (Java version).
* @param dataset a JavaRDD of words
* @return a Word2VecModel
*/
def fit[S <: JavaIterable[String]](dataset: JavaRDD[S]): Word2VecModel = {
fit(dataset.rdd.map(_.asScala))
}
}

/**
* Word2Vec model
* :: Experimental ::
* Word2Vec model
*/
@Experimental
class Word2VecModel private[mllib] (
private val model: Map[String, Array[Float]]) extends Serializable {

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.feature;

import java.io.Serializable;
import java.util.List;

import scala.Tuple2;

import com.google.common.collect.Lists;
import com.google.common.base.Strings;
import org.junit.After;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;

public class JavaWord2VecSuite implements Serializable {
private transient JavaSparkContext sc;

@Before
public void setUp() {
sc = new JavaSparkContext("local", "JavaWord2VecSuite");
}

@After
public void tearDown() {
sc.stop();
sc = null;
}

@Test
@SuppressWarnings("unchecked")
public void word2Vec() {
// The tests are to check Java compatibility.
String sentence = Strings.repeat("a b ", 100) + Strings.repeat("a c ", 10);
List<String> words = Lists.newArrayList(sentence.split(" "));
List<List<String>> localDoc = Lists.newArrayList(words, words);
JavaRDD<List<String>> doc = sc.parallelize(localDoc);
Word2Vec word2vec = new Word2Vec()
.setVectorSize(10)
.setSeed(42L);
Word2VecModel model = word2vec.fit(doc);
Tuple2<String, Object>[] syms = model.findSynonyms("a", 2);
Assert.assertEquals(2, syms.length);
Assert.assertEquals("b", syms[0]._1());
Assert.assertEquals("c", syms[1]._1());
}
}