-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-21087] [ML] CrossValidator, TrainValidationSplit expose sub models after fitting: Scala #19208
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SPARK-21087] [ML] CrossValidator, TrainValidationSplit expose sub models after fitting: Scala #19208
Changes from 7 commits
46d3ab3
ae13440
e0f4ce6
a33c4ea
e009ee1
931fa6c
2a83fb5
f2ef609
7bacfca
654e4d5
7e997da
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -17,7 +17,7 @@ | |
|
|
||
| package org.apache.spark.ml.tuning | ||
|
|
||
| import java.util.{List => JList} | ||
| import java.util.{List => JList, Locale} | ||
|
|
||
| import scala.collection.JavaConverters._ | ||
| import scala.concurrent.Future | ||
|
|
@@ -31,7 +31,7 @@ import org.apache.spark.internal.Logging | |
| import org.apache.spark.ml.{Estimator, Model} | ||
| import org.apache.spark.ml.evaluation.Evaluator | ||
| import org.apache.spark.ml.param.{IntParam, ParamMap, ParamValidators} | ||
| import org.apache.spark.ml.param.shared.HasParallelism | ||
| import org.apache.spark.ml.param.shared.{HasCollectSubModels, HasParallelism} | ||
| import org.apache.spark.ml.util._ | ||
| import org.apache.spark.mllib.util.MLUtils | ||
| import org.apache.spark.sql.{DataFrame, Dataset} | ||
|
|
@@ -67,7 +67,8 @@ private[ml] trait CrossValidatorParams extends ValidatorParams { | |
| @Since("1.2.0") | ||
| class CrossValidator @Since("1.2.0") (@Since("1.4.0") override val uid: String) | ||
| extends Estimator[CrossValidatorModel] | ||
| with CrossValidatorParams with HasParallelism with MLWritable with Logging { | ||
| with CrossValidatorParams with HasParallelism with HasCollectSubModels | ||
| with MLWritable with Logging { | ||
|
|
||
| @Since("1.2.0") | ||
| def this() = this(Identifiable.randomUID("cv")) | ||
|
|
@@ -101,6 +102,10 @@ class CrossValidator @Since("1.2.0") (@Since("1.4.0") override val uid: String) | |
| @Since("2.3.0") | ||
| def setParallelism(value: Int): this.type = set(parallelism, value) | ||
|
|
||
| /** @group expertSetParam */ | ||
| @Since("2.3.0") | ||
| def setCollectSubModels(value: Boolean): this.type = set(collectSubModels, value) | ||
|
|
||
| @Since("2.0.0") | ||
| override def fit(dataset: Dataset[_]): CrossValidatorModel = { | ||
| val schema = dataset.schema | ||
|
|
@@ -117,6 +122,12 @@ class CrossValidator @Since("1.2.0") (@Since("1.4.0") override val uid: String) | |
| instr.logParams(numFolds, seed, parallelism) | ||
| logTuningParams(instr) | ||
|
|
||
| val collectSubModelsParam = $(collectSubModels) | ||
|
|
||
| var subModels: Option[Array[Array[Model[_]]]] = if (collectSubModelsParam) { | ||
| Some(Array.fill($(numFolds))(Array.fill[Model[_]](epm.length)(null))) | ||
| } else None | ||
|
|
||
| // Compute metrics for each model over each split | ||
| val splits = MLUtils.kFold(dataset.toDF.rdd, $(numFolds), $(seed)) | ||
| val metrics = splits.zipWithIndex.map { case ((training, validation), splitIndex) => | ||
|
|
@@ -125,10 +136,14 @@ class CrossValidator @Since("1.2.0") (@Since("1.4.0") override val uid: String) | |
| logDebug(s"Train split $splitIndex with multiple sets of parameters.") | ||
|
|
||
| // Fit models in a Future for training in parallel | ||
| val modelFutures = epm.map { paramMap => | ||
| val modelFutures = epm.zipWithIndex.map { case (paramMap, paramIndex) => | ||
| Future[Model[_]] { | ||
| val model = est.fit(trainingDataset, paramMap) | ||
| model.asInstanceOf[Model[_]] | ||
| val model = est.fit(trainingDataset, paramMap).asInstanceOf[Model[_]] | ||
|
|
||
| if (collectSubModelsParam) { | ||
| subModels.get(splitIndex)(paramIndex) = model | ||
| } | ||
| model | ||
| } (executionContext) | ||
| } | ||
|
|
||
|
|
@@ -160,7 +175,8 @@ class CrossValidator @Since("1.2.0") (@Since("1.4.0") override val uid: String) | |
| logInfo(s"Best cross-validation metric: $bestMetric.") | ||
| val bestModel = est.fit(dataset, epm(bestIndex)).asInstanceOf[Model[_]] | ||
| instr.logSuccess(bestModel) | ||
| copyValues(new CrossValidatorModel(uid, bestModel, metrics).setParent(this)) | ||
| copyValues(new CrossValidatorModel(uid, bestModel, metrics) | ||
| .setSubModels(subModels).setParent(this)) | ||
| } | ||
|
|
||
| @Since("1.4.0") | ||
|
|
@@ -244,6 +260,21 @@ class CrossValidatorModel private[ml] ( | |
| this(uid, bestModel, avgMetrics.asScala.toArray) | ||
| } | ||
|
|
||
| private var _subModels: Option[Array[Array[Model[_]]]] = None | ||
|
|
||
| @Since("2.3.0") | ||
|
||
| private[tuning] def setSubModels(subModels: Option[Array[Array[Model[_]]]]) | ||
| : CrossValidatorModel = { | ||
| _subModels = subModels | ||
| this | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def subModels: Array[Array[Model[_]]] = _subModels.get | ||
|
||
|
|
||
| @Since("2.3.0") | ||
| def hasSubModels: Boolean = _subModels.isDefined | ||
|
|
||
| @Since("2.0.0") | ||
| override def transform(dataset: Dataset[_]): DataFrame = { | ||
| transformSchema(dataset.schema, logging = true) | ||
|
|
@@ -260,7 +291,8 @@ class CrossValidatorModel private[ml] ( | |
| val copied = new CrossValidatorModel( | ||
| uid, | ||
| bestModel.copy(extra).asInstanceOf[Model[_]], | ||
| avgMetrics.clone()) | ||
| avgMetrics.clone() | ||
| ).setSubModels(CrossValidatorModel.copySubModels(_subModels)) | ||
| copyValues(copied, extra).setParent(parent) | ||
| } | ||
|
|
||
|
|
@@ -271,6 +303,20 @@ class CrossValidatorModel private[ml] ( | |
| @Since("1.6.0") | ||
| object CrossValidatorModel extends MLReadable[CrossValidatorModel] { | ||
|
|
||
| private[CrossValidatorModel] def copySubModels(subModels: Option[Array[Array[Model[_]]]]) = { | ||
|
||
| subModels.map { subModels => | ||
|
||
| val numFolds = subModels.length | ||
| val numParamMaps = subModels(0).length | ||
| val copiedSubModels = Array.fill(numFolds)(Array.fill[Model[_]](numParamMaps)(null)) | ||
| for (i <- 0 until numFolds) { | ||
| for (j <- 0 until numParamMaps) { | ||
| copiedSubModels(i)(j) = subModels(i)(j).copy(ParamMap.empty).asInstanceOf[Model[_]] | ||
| } | ||
| } | ||
| copiedSubModels | ||
| } | ||
| } | ||
|
|
||
| @Since("1.6.0") | ||
| override def read: MLReader[CrossValidatorModel] = new CrossValidatorModelReader | ||
|
|
||
|
|
@@ -282,12 +328,40 @@ object CrossValidatorModel extends MLReadable[CrossValidatorModel] { | |
|
|
||
| ValidatorParams.validateParams(instance) | ||
|
|
||
| protected var shouldPersistSubModels: Boolean = if (instance.hasSubModels) true else false | ||
|
|
||
| /** | ||
| * Extra options for CrossValidatorModelWriter, current support "persistSubModels". | ||
| * if sub models exsit, the default value for option "persistSubModels" is "true". | ||
|
||
| */ | ||
| @Since("2.3.0") | ||
| override def option(key: String, value: String): this.type = { | ||
| key.toLowerCase(Locale.ROOT) match { | ||
| case "persistsubmodels" => shouldPersistSubModels = value.toBoolean | ||
| case _ => throw new IllegalArgumentException( | ||
| s"Illegal option ${key} for CrossValidatorModelWriter") | ||
| } | ||
| this | ||
| } | ||
|
|
||
| override protected def saveImpl(path: String): Unit = { | ||
| import org.json4s.JsonDSL._ | ||
| val extraMetadata = "avgMetrics" -> instance.avgMetrics.toSeq | ||
| val extraMetadata = ("avgMetrics" -> instance.avgMetrics.toSeq) ~ | ||
| ("shouldPersistSubModels" -> shouldPersistSubModels) | ||
|
||
| ValidatorParams.saveImpl(path, instance, sc, Some(extraMetadata)) | ||
| val bestModelPath = new Path(path, "bestModel").toString | ||
| instance.bestModel.asInstanceOf[MLWritable].save(bestModelPath) | ||
| if (shouldPersistSubModels) { | ||
| require(instance.hasSubModels, "Cannot get sub models to persist.") | ||
|
||
| val subModelsPath = new Path(path, "subModels") | ||
| for (splitIndex <- 0 until instance.getNumFolds) { | ||
| val splitPath = new Path(subModelsPath, splitIndex.toString) | ||
|
||
| for (paramIndex <- 0 until instance.getEstimatorParamMaps.length) { | ||
| val modelPath = new Path(splitPath, paramIndex.toString).toString | ||
| instance.subModels(splitIndex)(paramIndex).asInstanceOf[MLWritable].save(modelPath) | ||
| } | ||
| } | ||
| } | ||
| } | ||
| } | ||
|
|
||
|
|
@@ -301,11 +375,29 @@ object CrossValidatorModel extends MLReadable[CrossValidatorModel] { | |
|
|
||
| val (metadata, estimator, evaluator, estimatorParamMaps) = | ||
| ValidatorParams.loadImpl(path, sc, className) | ||
| val numFolds = (metadata.params \ "numFolds").extract[Int] | ||
| val bestModelPath = new Path(path, "bestModel").toString | ||
| val bestModel = DefaultParamsReader.loadParamsInstance[Model[_]](bestModelPath, sc) | ||
| val avgMetrics = (metadata.metadata \ "avgMetrics").extract[Seq[Double]].toArray | ||
| val shouldPersistSubModels = (metadata.metadata \ "shouldPersistSubModels").extract[Boolean] | ||
|
|
||
| val subModels: Option[Array[Array[Model[_]]]] = if (shouldPersistSubModels) { | ||
| val subModelsPath = new Path(path, "subModels") | ||
| val _subModels = Array.fill(numFolds)(Array.fill[Model[_]]( | ||
| estimatorParamMaps.length)(null)) | ||
| for (splitIndex <- 0 until numFolds) { | ||
| val splitPath = new Path(subModelsPath, splitIndex.toString) | ||
| for (paramIndex <- 0 until estimatorParamMaps.length) { | ||
| val modelPath = new Path(splitPath, paramIndex.toString).toString | ||
| _subModels(splitIndex)(paramIndex) = | ||
| DefaultParamsReader.loadParamsInstance(modelPath, sc) | ||
| } | ||
| } | ||
| Some(_subModels) | ||
| } else None | ||
|
|
||
| val model = new CrossValidatorModel(metadata.uid, bestModel, avgMetrics) | ||
| .setSubModels(subModels) | ||
| model.set(model.estimator, estimator) | ||
| .set(model.evaluator, evaluator) | ||
| .set(model.estimatorParamMaps, estimatorParamMaps) | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
so this var seems unnecessary, could we just it seems like we'd be better by just collecting modelFutures in copy values (then we can avoid the mutation on L145)
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@holdenk @jkbradley I already thought about this issue. The reason I use this way is:
modelFuturesandfoldMetricFutureswill be executed in pipelined way, when$(collectSubModels) == false, this will make sure that themodelgenerated inmodelFutureswill be released in time, so that the maximum memory cost will benumParallelism * sizeof(model). If we use the way of "collecting modelFutures", it will increase the memory cost to be$(estimatorParamMaps).length * sizeof(model). This is a serious issue which is discussed before.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't follow with #1, if we keep all the models (e.g. set
collectSubModelsParam) then the maximum memory cost will be$(estimatorParamMaps).length * sizeof(model)in either case? If we don't keep the models (e.g. setcollectSubModelsParamto false) then you don't have to collect the future back at the end and there is no additional overhead.For #2, It's not that mutation impacts performance, its that it makes the code less easy to reason about for no gain (unless I've misunderstood something about part 1).
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@holdenk Oh, sorry for confusing you. Yes, if set
collectSubModelsParamthe memory cost will always be$(estimatorParamMaps).length * sizeof(model). According to your suggestion, we have to duplicate code logic (but if i am wrong correct me):collectSubModelsParam, we cannot pipelinemodelFuturesandfoldMetricFutures, we should executemodelFuturesand collect results first, and modifyfoldMetricFutureslogic, change it into something like following:collectSubModelsParam, just keep currentmodelFutures&foldMetricFuturesand pipeline them to execute. (Only pipeline them we can save memory cost tonumParallelism * sizeof(model).So, according to your suggestion, it seems need more code. So do you still prefer this way ? Or do you have better way to implement that ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sorry I didn't follow up on this before. I think that @WeichenXu123 's argument is valid, but please say if there are issues I'm missing @holdenk