-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-22346][ML] VectorSizeHint Transformer for using VectorAssembler in StructuredSteaming #19746
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 7 commits
24cc417
2e76297
136d8f8
e117c15
591dcd2
b30e3b1
cafa875
7021552
d63f077
9c3dcec
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,188 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one or more | ||
| * contributor license agreements. See the NOTICE file distributed with | ||
| * this work for additional information regarding copyright ownership. | ||
| * The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| * (the "License"); you may not use this file except in compliance with | ||
| * the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.spark.ml.feature | ||
|
|
||
| import org.apache.spark.SparkException | ||
| import org.apache.spark.annotation.{Experimental, Since} | ||
| import org.apache.spark.ml.Transformer | ||
| import org.apache.spark.ml.attribute.AttributeGroup | ||
| import org.apache.spark.ml.linalg.{Vector, VectorUDT} | ||
| import org.apache.spark.ml.param.{IntParam, Param, ParamMap, ParamValidators} | ||
| import org.apache.spark.ml.param.shared.{HasHandleInvalid, HasInputCol} | ||
| import org.apache.spark.ml.util.{DefaultParamsReadable, DefaultParamsWritable, Identifiable} | ||
| import org.apache.spark.sql.{Column, DataFrame, Dataset} | ||
| import org.apache.spark.sql.functions.{col, udf} | ||
| import org.apache.spark.sql.types.StructType | ||
|
|
||
| /** | ||
| * :: Experimental :: | ||
| * A feature transformer that adds size information to the metadata of a vector column. | ||
| * VectorAssembler needs size information for its input columns and cannot be used on streaming | ||
| * dataframes without this metadata. | ||
| * | ||
| */ | ||
| @Experimental | ||
| @Since("2.3.0") | ||
| class VectorSizeHint @Since("2.3.0") (@Since("2.3.0") override val uid: String) | ||
| extends Transformer with HasInputCol with HasHandleInvalid with DefaultParamsWritable { | ||
|
|
||
| @Since("2.3.0") | ||
| def this() = this(Identifiable.randomUID("vectSizeHint")) | ||
|
|
||
| /** | ||
| * The size of Vectors in `inputCol`. | ||
| * @group param | ||
| */ | ||
| @Since("2.3.0") | ||
| val size: IntParam = new IntParam( | ||
| this, | ||
| "size", | ||
| "Size of vectors in column.", | ||
| {s: Int => s >= 0}) | ||
|
|
||
| /** group getParam */ | ||
| @Since("2.3.0") | ||
|
||
| def getSize: Int = getOrDefault(size) | ||
|
|
||
| /** @group setParam */ | ||
| @Since("2.3.0") | ||
| def setSize(value: Int): this.type = set(size, value) | ||
|
|
||
| /** @group setParam */ | ||
| @Since("2.3.0") | ||
| def setInputCol(value: String): this.type = set(inputCol, value) | ||
|
|
||
| /** | ||
| * Param for how to handle invalid entries. Invalid vectors include nulls and vectors with the | ||
| * wrong size. The options are `skip` (filter out rows with invalid vectors), `error` (throw an | ||
| * error) and `keep` (do not check the vector size, and keep all rows). `error` by default. | ||
|
||
| * @group param | ||
| */ | ||
| @Since("2.3.0") | ||
|
||
| override val handleInvalid: Param[String] = new Param[String]( | ||
| this, | ||
| "handleInvalid", | ||
| "How to handle invalid vectors in inputCol. Invalid vectors include nulls and vectors with " + | ||
| "the wrong size. The options are skip (filter out rows with invalid vectors), error " + | ||
| "(throw an error) and keep (do not check the vector size, and keep all rows). `error` by " + | ||
|
||
| "default.", | ||
| ParamValidators.inArray(VectorSizeHint.supportedHandleInvalids)) | ||
|
|
||
| /** @group setParam */ | ||
| @Since("2.3.0") | ||
| def setHandleInvalid(value: String): this.type = set(handleInvalid, value) | ||
| setDefault(handleInvalid, VectorSizeHint.ERROR_INVALID) | ||
|
|
||
| @Since("2.3.0") | ||
| override def transform(dataset: Dataset[_]): DataFrame = { | ||
| val localInputCol = getInputCol | ||
|
||
| val localSize = getSize | ||
| val localHandleInvalid = getHandleInvalid | ||
|
|
||
| val group = AttributeGroup.fromStructField(dataset.schema(localInputCol)) | ||
| val newGroup = validateSchemaAndSize(dataset.schema, group) | ||
| if (localHandleInvalid == VectorSizeHint.OPTIMISTIC_INVALID && group.size == localSize) { | ||
| dataset.toDF() | ||
| } else { | ||
| val newCol: Column = localHandleInvalid match { | ||
| case VectorSizeHint.OPTIMISTIC_INVALID => col(localInputCol) | ||
| case VectorSizeHint.ERROR_INVALID => | ||
| val checkVectorSizeUDF = udf { vector: Vector => | ||
| if (vector == null) { | ||
| throw new SparkException(s"Got null vector in VectorSizeHint, set `handleInvalid` " + | ||
| s"to 'skip' to filter invalid rows.") | ||
| } | ||
| if (vector.size != localSize) { | ||
| throw new SparkException(s"VectorSizeHint Expecting a vector of size $localSize but" + | ||
| s" got ${vector.size}") | ||
| } | ||
| vector | ||
| }.asNondeterministic() | ||
| checkVectorSizeUDF(col(localInputCol)) | ||
| case VectorSizeHint.SKIP_INVALID => | ||
| val checkVectorSizeUDF = udf { vector: Vector => | ||
|
||
| if (vector != null && vector.size == localSize) { | ||
| vector | ||
| } else { | ||
| null | ||
| } | ||
| } | ||
| checkVectorSizeUDF(col(localInputCol)) | ||
| } | ||
|
|
||
| val res = dataset.withColumn(localInputCol, newCol.as(localInputCol, newGroup.toMetadata())) | ||
| if (localHandleInvalid == VectorSizeHint.SKIP_INVALID) { | ||
| res.na.drop(Array(localInputCol)) | ||
| } else { | ||
| res | ||
| } | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * Checks that schema can be updated with new size and returns a new attribute group with | ||
| * updated size. | ||
| */ | ||
| private def validateSchemaAndSize(schema: StructType, group: AttributeGroup): AttributeGroup = { | ||
| // This will throw a NoSuchElementException if params are not set. | ||
| val localSize = getSize | ||
| val localInputCol = getInputCol | ||
|
|
||
| val inputColType = schema(getInputCol).dataType | ||
| require( | ||
| inputColType.isInstanceOf[VectorUDT], | ||
| s"Input column, $getInputCol must be of Vector type, got $inputColType" | ||
| ) | ||
| group.size match { | ||
| case `localSize` => group | ||
| case -1 => new AttributeGroup(localInputCol, localSize) | ||
| case _ => | ||
| val msg = s"Trying to set size of vectors in `$localInputCol` to $localSize but size " + | ||
| s"already set to ${group.size}." | ||
| throw new IllegalArgumentException(msg) | ||
| } | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| override def transformSchema(schema: StructType): StructType = { | ||
| val fieldIndex = schema.fieldIndex(getInputCol) | ||
| val fields = schema.fields.clone() | ||
| val inputField = fields(fieldIndex) | ||
| val group = AttributeGroup.fromStructField(inputField) | ||
| val newGroup = validateSchemaAndSize(schema, group) | ||
| fields(fieldIndex) = inputField.copy(metadata = newGroup.toMetadata()) | ||
| StructType(fields) | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| override def copy(extra: ParamMap): this.type = defaultCopy(extra) | ||
| } | ||
|
|
||
| @Experimental | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Add Scala docstring here with |
||
| @Since("2.3.0") | ||
| object VectorSizeHint extends DefaultParamsReadable[VectorSizeHint] { | ||
|
|
||
| private[feature] val OPTIMISTIC_INVALID = "optimistic" | ||
|
||
| private[feature] val ERROR_INVALID = "error" | ||
| private[feature] val SKIP_INVALID = "skip" | ||
| private[feature] val supportedHandleInvalids: Array[String] = | ||
| Array(OPTIMISTIC_INVALID, ERROR_INVALID, SKIP_INVALID) | ||
|
|
||
| @Since("2.3.0") | ||
| override def load(path: String): VectorSizeHint = super.load(path) | ||
| } | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,190 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one or more | ||
| * contributor license agreements. See the NOTICE file distributed with | ||
| * this work for additional information regarding copyright ownership. | ||
| * The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| * (the "License"); you may not use this file except in compliance with | ||
| * the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.spark.ml.feature | ||
|
|
||
| import org.apache.spark.{SparkException, SparkFunSuite} | ||
| import org.apache.spark.ml.Pipeline | ||
| import org.apache.spark.ml.attribute.AttributeGroup | ||
| import org.apache.spark.ml.linalg.{Vector, Vectors} | ||
| import org.apache.spark.ml.util.DefaultReadWriteTest | ||
| import org.apache.spark.mllib.util.MLlibTestSparkContext | ||
| import org.apache.spark.sql.execution.streaming.MemoryStream | ||
| import org.apache.spark.sql.streaming.StreamTest | ||
|
|
||
| class VectorSizeHintSuite | ||
| extends SparkFunSuite with MLlibTestSparkContext with DefaultReadWriteTest { | ||
|
|
||
| import testImplicits._ | ||
|
|
||
| test("Test Param Validators") { | ||
| intercept[IllegalArgumentException] (new VectorSizeHint().setHandleInvalid("invalidValue")) | ||
| intercept[IllegalArgumentException] (new VectorSizeHint().setSize(-3)) | ||
| } | ||
|
|
||
| test("Required params must be set before transform.") { | ||
| val data = Seq((Vectors.dense(1, 2), 0)).toDF("vector", "intValue") | ||
|
|
||
| val noSizeTransformer = new VectorSizeHint().setInputCol("vector") | ||
| intercept[NoSuchElementException] (noSizeTransformer.transform(data)) | ||
| intercept[NoSuchElementException] (noSizeTransformer.transformSchema(data.schema)) | ||
|
|
||
| val noInputColTransformer = new VectorSizeHint().setSize(2) | ||
| intercept[NoSuchElementException] (noInputColTransformer.transform(data)) | ||
| intercept[NoSuchElementException] (noInputColTransformer.transformSchema(data.schema)) | ||
| } | ||
|
|
||
| test("Adding size to column of vectors.") { | ||
|
|
||
| val size = 3 | ||
| val vectorColName = "vector" | ||
| val denseVector = Vectors.dense(1, 2, 3) | ||
| val sparseVector = Vectors.sparse(size, Array(), Array()) | ||
|
|
||
| val data = Seq(denseVector, denseVector, sparseVector).map(Tuple1.apply) | ||
| val dataFrame = data.toDF(vectorColName) | ||
| assert( | ||
| AttributeGroup.fromStructField(dataFrame.schema(vectorColName)).size == -1, | ||
| s"This test requires that column '$vectorColName' not have size metadata.") | ||
|
|
||
| for (handleInvalid <- VectorSizeHint.supportedHandleInvalids) { | ||
| val transformer = new VectorSizeHint() | ||
| .setInputCol(vectorColName) | ||
| .setSize(size) | ||
| .setHandleInvalid(handleInvalid) | ||
| val withSize = transformer.transform(dataFrame) | ||
| assert( | ||
| AttributeGroup.fromStructField(withSize.schema(vectorColName)).size == size, | ||
| "Transformer did not add expected size data.") | ||
| val numRows = withSize.collect().length | ||
| assert(numRows === data.length, s"Expecting ${data.length} rows, got $numRows.") | ||
| } | ||
| } | ||
|
|
||
| test("Size hint preserves attributes.") { | ||
|
|
||
| val size = 3 | ||
| val vectorColName = "vector" | ||
| val data = Seq((1, 2, 3), (2, 3, 3)) | ||
| val dataFrame = data.toDF("x", "y", "z") | ||
|
|
||
| val assembler = new VectorAssembler() | ||
| .setInputCols(Array("x", "y", "z")) | ||
| .setOutputCol(vectorColName) | ||
| val dataFrameWithMetadata = assembler.transform(dataFrame) | ||
| val group = AttributeGroup.fromStructField(dataFrameWithMetadata.schema(vectorColName)) | ||
|
|
||
| for (handleInvalid <- VectorSizeHint.supportedHandleInvalids) { | ||
| val transformer = new VectorSizeHint() | ||
| .setInputCol(vectorColName) | ||
| .setSize(size) | ||
| .setHandleInvalid(handleInvalid) | ||
| val withSize = transformer.transform(dataFrameWithMetadata) | ||
|
|
||
| val newGroup = AttributeGroup.fromStructField(withSize.schema(vectorColName)) | ||
| assert(newGroup.size === size, "Column has incorrect size metadata.") | ||
| assert( | ||
| newGroup.attributes.get === group.attributes.get, | ||
| "VectorSizeHint did not preserve attributes.") | ||
| withSize.collect | ||
| } | ||
| } | ||
|
|
||
| test("Size mismatch between current and target size raises an error.") { | ||
| val size = 4 | ||
| val vectorColName = "vector" | ||
| val data = Seq((1, 2, 3), (2, 3, 3)) | ||
| val dataFrame = data.toDF("x", "y", "z") | ||
|
|
||
| val assembler = new VectorAssembler() | ||
| .setInputCols(Array("x", "y", "z")) | ||
| .setOutputCol(vectorColName) | ||
| val dataFrameWithMetadata = assembler.transform(dataFrame) | ||
|
|
||
| for (handleInvalid <- VectorSizeHint.supportedHandleInvalids) { | ||
| val transformer = new VectorSizeHint() | ||
| .setInputCol(vectorColName) | ||
| .setSize(size) | ||
| .setHandleInvalid(handleInvalid) | ||
| intercept[IllegalArgumentException](transformer.transform(dataFrameWithMetadata)) | ||
| } | ||
| } | ||
|
|
||
| test("Handle invalid does the right thing.") { | ||
|
||
|
|
||
| val vector = Vectors.dense(1, 2, 3) | ||
| val short = Vectors.dense(2) | ||
| val dataWithNull = Seq(vector, null).map(Tuple1.apply).toDF("vector") | ||
| val dataWithShort = Seq(vector, short).map(Tuple1.apply).toDF("vector") | ||
|
|
||
| val sizeHint = new VectorSizeHint() | ||
| .setInputCol("vector") | ||
| .setHandleInvalid("error") | ||
| .setSize(3) | ||
|
|
||
| intercept[SparkException](sizeHint.transform(dataWithNull).collect()) | ||
| intercept[SparkException](sizeHint.transform(dataWithShort).collect()) | ||
|
|
||
| sizeHint.setHandleInvalid("skip") | ||
| assert(sizeHint.transform(dataWithNull).count() === 1) | ||
| assert(sizeHint.transform(dataWithShort).count() === 1) | ||
| } | ||
|
||
|
|
||
| test("read/write") { | ||
| val sizeHint = new VectorSizeHint() | ||
| .setInputCol("myInputCol") | ||
| .setSize(11) | ||
| .setHandleInvalid("skip") | ||
| testDefaultReadWrite(sizeHint) | ||
| } | ||
| } | ||
|
|
||
| class VectorSizeHintStreamingSuite extends StreamTest { | ||
|
|
||
| import testImplicits._ | ||
|
|
||
| test("Test assemble vectors with size hint in streaming.") { | ||
| val a = Vectors.dense(0, 1, 2) | ||
| val b = Vectors.sparse(4, Array(0, 3), Array(3, 6)) | ||
|
|
||
| val stream = MemoryStream[(Vector, Vector)] | ||
| val streamingDF = stream.toDS.toDF("a", "b") | ||
| val sizeHintA = new VectorSizeHint() | ||
| .setSize(3) | ||
| .setInputCol("a") | ||
| val sizeHintB = new VectorSizeHint() | ||
| .setSize(4) | ||
| .setInputCol("b") | ||
| val vectorAssembler = new VectorAssembler() | ||
| .setInputCols(Array("a", "b")) | ||
| .setOutputCol("assembled") | ||
| val pipeline = new Pipeline().setStages(Array(sizeHintA, sizeHintB, vectorAssembler)) | ||
| /** | ||
|
||
| val output = Seq(sizeHintA, sizeHintB, vectorAssembler).foldLeft(streamingDF) { | ||
|
||
| case (data, transformer) => transformer.transform(data) | ||
| }.select("assembled") | ||
| */ | ||
| val output = pipeline.fit(streamingDF).transform(streamingDF).select("assembled") | ||
|
|
||
| val expected = Vectors.dense(0, 1, 2, 3, 0, 0, 6) | ||
|
|
||
| testStream (output) ( | ||
| AddData(stream, (a, b), (a, b)), | ||
| CheckAnswer(Tuple1(expected), Tuple1(expected)) | ||
| ) | ||
| } | ||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add a docstring and mark with
@group param