Skip to content
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
Example code for Power Iteration Clustering
  • Loading branch information
shahidki31 committed May 21, 2018
commit f53a0751f09efcb6fe379ddec4d57d68edbd5190
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// scalastyle:off println
package org.apache.spark.examples.ml

import org.apache.log4j.{Level, Logger}

// $example on$
import org.apache.spark.ml.clustering.PowerIterationClustering
// $example off$
import org.apache.spark.sql.{DataFrame, Row, SparkSession}


/**
* An example demonstrating power iteration clustering.
* Run with
* {{{
* bin/run-example ml.PowerIterationClusteringExample
* }}}
*/

object PowerIterationClusteringExample {

def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName(s"${this.getClass.getSimpleName}")
.getOrCreate()

Logger.getRootLogger.setLevel(Level.WARN)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This may not be necessary.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes. I have removed.


// $example on$

// Generates data.
val radius1 = 1.0
val numPoints1 = 5
val radius2 = 4.0
val numPoints2 = 20

val dataset = generatePICData(spark, radius1, radius2, numPoints1, numPoints2)

// Trains a PIC model.
val model = new PowerIterationClustering().
setK(2).
setInitMode("degree").
setMaxIter(20)

val prediction = model.transform(dataset).select("id", "prediction")

// Shows the result.
// println("Cluster Assignment: ")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe add prediction.show() first to demo the result of the transform

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes. prediction.show() would be better in the new dataset.

val result = prediction.collect().map {
row => (row(1), row(0))
}.groupBy(_._1).mapValues(_.map(_._2))

result.foreach {
case (cluster, points) => println(s"$cluster -> [${points.mkString(",")}]")
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This can be achieved by DataFrame API, groupBy.. collect_set

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

prediction.show() displays the cluster assignment properly. So this may not be required. current output based on the new dataset will be,
| id|prediction|
+---+----------+
| 4| 1|
| 0| 0|
| 1| 0|
| 3| 1|
| 2| 0|
+---+----------+

// $example off$

spark.stop()
}

def generatePICData(spark: SparkSession,
r1: Double,
r2: Double,
n1: Int,
n2: Int): DataFrame = {
val n = n1 + n2
val points = genCircle(r1, n1) ++ genCircle(r2, n2)

val rows = for (i <- 0 until n) yield {
val neighbors = for (j <- 0 until i) yield {
j.toLong
}
val similarities = for (j <- 0 until i) yield {
sim(points(i), points(j))
}
(i.toLong, neighbors.toArray, similarities.toArray)
}
spark.createDataFrame(rows).toDF("id", "neighbors", "similarities")
}

/** Generates a circle of points. */
private def genCircle(r: Double, n: Int): Array[(Double, Double)] = {
Array.tabulate(n) { i =>
val theta = 2.0 * math.Pi * i / n
(r * math.cos(theta), r * math.sin(theta))
}
}

/** Computes Gaussian similarity. */
private def sim(x: (Double, Double), y: (Double, Double)): Double = {
val dist2 = (x._1 - y._1) * (x._1 - y._1) + (x._2 - y._2) * (x._2 - y._2)
math.exp(-dist2 / 2.0)
}
}

// scalastyle:on println