Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
fix also KeyValueGroupedDataset and other methods
  • Loading branch information
mgaido91 committed May 26, 2018
commit e2132c9a45551e834228ebcf0b7fb51ce4df8f6c
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ class KeyValueGroupedDataset[K, V] private[sql](
private implicit val kExprEnc = encoderFor(kEncoder)
private implicit val vExprEnc = encoderFor(vEncoder)

private def logicalPlan = queryExecution.analyzed
private def logicalPlan = AnalysisBarrier(queryExecution.analyzed)
private def sparkSession = queryExecution.sparkSession

/**
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -433,7 +433,7 @@ class RelationalGroupedDataset protected[sql](
df.exprEnc.schema,
groupingAttributes,
df.logicalPlan.output,
df.logicalPlan))
df.planWithBarrier))
}

/**
Expand All @@ -459,7 +459,7 @@ class RelationalGroupedDataset protected[sql](
case other => Alias(other, other.toString)()
}
val groupingAttributes = groupingNamedExpressions.map(_.toAttribute)
val child = df.logicalPlan
val child = df.planWithBarrier
val project = Project(groupingNamedExpressions ++ child.output, child)
val output = expr.dataType.asInstanceOf[StructType].toAttributes
val plan = FlatMapGroupsInPandas(groupingAttributes, expr, output, project)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql

import org.scalatest.Assertion

import org.apache.spark.api.python.PythonEvalType
import org.apache.spark.sql.catalyst.expressions.PythonUDF
import org.apache.spark.sql.catalyst.plans.logical.AnalysisBarrier
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.test.SharedSQLContext
import org.apache.spark.sql.types.{LongType, StructField, StructType}

class GroupedDatasetSuite extends QueryTest with SharedSQLContext {
import testImplicits._

private val scalaUDF = udf((x: Long) => { x + 1 })
private lazy val datasetWithUDF = spark.range(1).toDF("s").select($"s", scalaUDF($"s"))

private def assertContainsAnalysisBarrier(ds: Dataset[_], atLevel: Int = 1): Assertion = {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

withinLevel? From the test code, seems it doesn't expect a barrier exactly at the level but within the level?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Indeed, it expects a barrier exactly at level atLevel and not within. May you please recheck the code?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh, I see. Sorry, you only take children at the level. Thanks.

Copy link
Member

@viirya viirya May 27, 2018

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: Is the returned Assertion here necessary?

assert(atLevel >= 0)
var children = Seq(ds.queryExecution.logical)
(1 to atLevel).foreach { _ =>
children = children.flatMap(_.children)
}
val barriers = children.collect {
case ab: AnalysisBarrier => ab
}
assert(barriers.nonEmpty, s"Plan does not contain AnalysisBarrier at level $atLevel:\n" +
ds.queryExecution.logical)
}

test("SPARK-24373: avoid running Analyzer rules twice on RelationalGroupedDataset") {
val groupByDataset = datasetWithUDF.groupBy()
val rollupDataset = datasetWithUDF.rollup("s")
val cubeDataset = datasetWithUDF.cube("s")
val pivotDataset = datasetWithUDF.groupBy().pivot("s", Seq(1, 2))
datasetWithUDF.cache()
Seq(groupByDataset, rollupDataset, cubeDataset, pivotDataset).foreach { rgDS =>
val df = rgDS.count()
assertContainsAnalysisBarrier(df)
assertCached(df)
}

val flatMapGroupsInRDF = datasetWithUDF.groupBy().flatMapGroupsInR(
Array.emptyByteArray,
Array.emptyByteArray,
Array.empty,
StructType(Seq(StructField("s", LongType))))
val flatMapGroupsInPandasDF = datasetWithUDF.groupBy().flatMapGroupsInPandas(PythonUDF(
"pyUDF",
null,
StructType(Seq(StructField("s", LongType))),
Seq.empty,
PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF,
true))
Seq(flatMapGroupsInRDF, flatMapGroupsInPandasDF).foreach { df =>
assertContainsAnalysisBarrier(df, 2)
assertCached(df)
}
datasetWithUDF.unpersist(true)
}

test("SPARK-24373: avoid running Analyzer rules twice on KeyValueGroupedDataset") {
val kvDasaset = datasetWithUDF.groupByKey(_.getLong(0))
datasetWithUDF.cache()
val mapValuesKVDataset = kvDasaset.mapValues(_.getLong(0)).reduceGroups(_ + _)
val keysKVDataset = kvDasaset.keys
val flatMapGroupsKVDataset = kvDasaset.flatMapGroups((k, _) => Seq(k))
val aggKVDataset = kvDasaset.count()
val otherKVDataset = spark.range(1).groupByKey(_ + 1)
val cogroupKVDataset = kvDasaset.cogroup(otherKVDataset)((k, _, _) => Seq(k))
Seq((mapValuesKVDataset, 1),
(keysKVDataset, 2),
(flatMapGroupsKVDataset, 2),
(aggKVDataset, 1),
(cogroupKVDataset, 2)).foreach { case (df, analysisBarrierDepth) =>
assertContainsAnalysisBarrier(df, analysisBarrierDepth)
assertCached(df)
}
datasetWithUDF.unpersist(true)
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -529,15 +529,4 @@ class InMemoryColumnarQuerySuite extends QueryTest with SharedSQLContext {
}
}
}

test("SPARK-24373: avoid running Analyzer rules twice on RelationalGroupedDataset") {
val myUDF = udf((x: Long) => { x + 1 })
val df1 = spark.range(0, 1).toDF("s").select(myUDF($"s"))
df1.cache()
val countDf = df1.groupBy().count()
val cachedPlan = countDf.queryExecution.executedPlan.collect {
case plan: InMemoryTableScanExec => plan
}
assert(cachedPlan.nonEmpty)
}
}