Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions R/pkg/R/mllib_fpm.R
Original file line number Diff line number Diff line change
Expand Up @@ -122,11 +122,12 @@ setMethod("spark.freqItemsets", signature(object = "FPGrowthModel"),
# Get association rules.

#' @return A \code{SparkDataFrame} with association rules.
#' The \code{SparkDataFrame} contains four columns:
#' The \code{SparkDataFrame} contains five columns:
#' \code{antecedent} (an array of the same type as the input column),
#' \code{consequent} (an array of the same type as the input column),
#' \code{condfidence} (confidence for the rule)
#' and \code{lift} (lift for the rule)
#' \code{lift} (lift for the rule)
#' and \code{support} (support for the rule)
#' @rdname spark.fpGrowth
#' @aliases associationRules,FPGrowthModel-method
#' @note spark.associationRules(FPGrowthModel) since 2.2.0
Expand Down
3 changes: 2 additions & 1 deletion R/pkg/tests/fulltests/test_mllib_fpm.R
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,8 @@ test_that("spark.fpGrowth", {
antecedent = I(list(list("2"), list("3"))),
consequent = I(list(list("1"), list("1"))),
confidence = c(1, 1),
lift = c(1, 1)
lift = c(1, 1),
support = c(0.75, 0.5)
)

expect_equivalent(expected_association_rules, collect(spark.associationRules(model)))
Expand Down
20 changes: 12 additions & 8 deletions mllib/src/main/scala/org/apache/spark/ml/fpm/FPGrowth.scala
Original file line number Diff line number Diff line change
Expand Up @@ -244,17 +244,18 @@ class FPGrowthModel private[ml] (
@transient private var _cachedRules: DataFrame = _

/**
* Get association rules fitted using the minConfidence. Returns a dataframe with four fields,
* "antecedent", "consequent", "confidence" and "lift", where "antecedent" and "consequent" are
* Array[T], whereas "confidence" and "lift" are Double.
* Get association rules fitted using the minConfidence. Returns a dataframe with five fields,
* "antecedent", "consequent", "confidence", "lift" and "support", where "antecedent" and
* "consequent" are Array[T], whereas "confidence", "lift" and "support" are Double.
*/
@Since("2.2.0")
@transient def associationRules: DataFrame = {
if ($(minConfidence) == _cachedMinConf) {
_cachedRules
} else {
_cachedRules = AssociationRules
.getAssociationRulesFromFP(freqItemsets, "items", "freq", $(minConfidence), itemSupport)
.getAssociationRulesFromFP(freqItemsets, "items", "freq", $(minConfidence), itemSupport,
numTrainingRecords)
_cachedMinConf = $(minConfidence)
_cachedRules
}
Expand Down Expand Up @@ -385,6 +386,7 @@ private[fpm] object AssociationRules {
* @param freqCol column name for appearance count of the frequent itemsets
* @param minConfidence minimum confidence for generating the association rules
* @param itemSupport map containing an item and its support
* @param numTrainingRecords count of training Dataset
* @return a DataFrame("antecedent"[Array], "consequent"[Array], "confidence"[Double],
* "lift" [Double]) containing the association rules.
*/
Expand All @@ -393,21 +395,23 @@ private[fpm] object AssociationRules {
itemsCol: String,
freqCol: String,
minConfidence: Double,
itemSupport: scala.collection.Map[T, Double]): DataFrame = {

itemSupport: scala.collection.Map[T, Double],
numTrainingRecords: Long): DataFrame = {
val freqItemSetRdd = dataset.select(itemsCol, freqCol).rdd
.map(row => new FreqItemset(row.getSeq[T](0).toArray, row.getLong(1)))
val rows = new MLlibAssociationRules()
.setMinConfidence(minConfidence)
.run(freqItemSetRdd, itemSupport)
.map(r => Row(r.antecedent, r.consequent, r.confidence, r.lift.orNull))
.map(r => Row(r.antecedent, r.consequent, r.confidence, r.lift.orNull,
r.freqUnion / numTrainingRecords))

val dt = dataset.schema(itemsCol).dataType
val schema = StructType(Seq(
StructField("antecedent", dt, nullable = false),
StructField("consequent", dt, nullable = false),
StructField("confidence", DoubleType, nullable = false),
StructField("lift", DoubleType)))
StructField("lift", DoubleType),
StructField("support", DoubleType, nullable = false)))
val rules = dataset.sparkSession.createDataFrame(rows, schema)
rules
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ object AssociationRules {
class Rule[Item] private[fpm] (
@Since("1.5.0") val antecedent: Array[Item],
@Since("1.5.0") val consequent: Array[Item],
freqUnion: Double,
private[spark] val freqUnion: Double,
freqAntecedent: Double,
freqConsequent: Option[Double]) extends Serializable {

Expand Down
31 changes: 28 additions & 3 deletions mllib/src/test/scala/org/apache/spark/ml/fpm/FPGrowthSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -39,9 +39,9 @@ class FPGrowthSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
val model = new FPGrowth().setMinSupport(0.5).fit(data)
val generatedRules = model.setMinConfidence(0.5).associationRules
val expectedRules = spark.createDataFrame(Seq(
(Array("2"), Array("1"), 1.0, 1.0),
(Array("1"), Array("2"), 0.75, 1.0)
)).toDF("antecedent", "consequent", "confidence", "lift")
(Array("2"), Array("1"), 1.0, 1.0, 0.75),
(Array("1"), Array("2"), 0.75, 1.0, 0.75)
)).toDF("antecedent", "consequent", "confidence", "lift", "support")
.withColumn("antecedent", col("antecedent").cast(ArrayType(dt)))
.withColumn("consequent", col("consequent").cast(ArrayType(dt)))
assert(expectedRules.sort("antecedent").rdd.collect().sameElements(
Expand All @@ -61,6 +61,31 @@ class FPGrowthSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul
}
}

test("FPGrowth associationRules") {
val dataset = spark.createDataFrame(Seq(
(1, Array("1", "2")),
(2, Array("3")),
(3, Array("4", "5")),
(4, Array("1", "2", "3")),
(5, Array("2"))
)).toDF("id", "items")
val model = new FPGrowth().setMinSupport(0.1).setMinConfidence(0.1).fit(dataset)
val expectedRules = spark.createDataFrame(Seq(
(Array("2"), Array("1"), 0.6666666666666666, 1.6666666666666665, 0.4),
(Array("2"), Array("3"), 0.3333333333333333, 0.8333333333333333, 0.2),
(Array("3"), Array("1"), 0.5, 1.25, 0.2),
(Array("3"), Array("2"), 0.5, 0.8333333333333334, 0.2),
(Array("1", "3"), Array("2"), 1.0, 1.6666666666666667, 0.2),
(Array("1", "2"), Array("3"), 0.5, 1.25, 0.2),
(Array("4"), Array("5"), 1.0, 5.0, 0.2),
(Array("5"), Array("4"), 1.0, 5.0, 0.2),
(Array("1"), Array("3"), 0.5, 1.25, 0.2),
(Array("1"), Array("2"), 1.0, 1.6666666666666667, 0.4),
(Array("3", "2"), Array("1"), 1.0, 2.5, 0.2)
)).toDF("antecedent", "consequent", "confidence", "lift", "support")
assert(expectedRules.collect().toSet.equals(model.associationRules.collect().toSet))
}

test("FPGrowth getFreqItems") {
val model = new FPGrowth().setMinSupport(0.7).fit(dataset)
val expectedFreq = spark.createDataFrame(Seq(
Expand Down
18 changes: 9 additions & 9 deletions python/pyspark/ml/fpm.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,15 +180,15 @@ class FPGrowth(JavaEstimator, _FPGrowthParams, JavaMLWritable, JavaMLReadable):
only showing top 5 rows
...
>>> fpm.associationRules.show(5)
+----------+----------+----------+----+
|antecedent|consequent|confidence|lift|
+----------+----------+----------+----+
| [t, s]| [y]| 1.0| 2.0|
| [t, s]| [x]| 1.0| 1.5|
| [t, s]| [z]| 1.0| 1.2|
| [p]| [r]| 1.0| 2.0|
| [p]| [z]| 1.0| 1.2|
+----------+----------+----------+----+
+----------+----------+----------+----+------------------+
|antecedent|consequent|confidence|lift| support|
+----------+----------+----------+----+------------------+
| [t, s]| [y]| 1.0| 2.0|0.3333333333333333|
| [t, s]| [x]| 1.0| 1.5|0.3333333333333333|
| [t, s]| [z]| 1.0| 1.2|0.3333333333333333|
| [p]| [r]| 1.0| 2.0|0.3333333333333333|
| [p]| [z]| 1.0| 1.2|0.3333333333333333|
+----------+----------+----------+----+------------------+
only showing top 5 rows
...
>>> new_data = spark.createDataFrame([(["t", "s"], )], ["items"])
Expand Down
4 changes: 2 additions & 2 deletions python/pyspark/ml/tests/test_algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,8 +226,8 @@ def test_association_rules(self):
fpm = fp.fit(self.data)

expected_association_rules = self.spark.createDataFrame(
[([3], [1], 1.0, 1.0), ([2], [1], 1.0, 1.0)],
["antecedent", "consequent", "confidence", "lift"]
[([3], [1], 1.0, 1.0, 0.5), ([2], [1], 1.0, 1.0, 0.75)],
["antecedent", "consequent", "confidence", "lift", "support"]
)
actual_association_rules = fpm.associationRules

Expand Down