Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/docs/source/migration_guide/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ This page describes the migration guide specific to PySpark.
.. toctree::
:maxdepth: 2

pyspark_3.1_to_3.2
pyspark_2.4_to_3.0
pyspark_2.3_to_2.4
pyspark_2.3.0_to_2.3.1_above
Expand Down
23 changes: 23 additions & 0 deletions python/docs/source/migration_guide/pyspark_3.1_to_3.2.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
.. Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

.. http://www.apache.org/licenses/LICENSE-2.0

.. Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.


=================================
Upgrading from PySpark 3.1 to 3.2
=================================

* In Spark 3.2, the PySpark methods from sql, ml, spark_on_pandas modules raise the ``TypeError`` instead of ``ValueError`` when are applied to an param of inappropriate type.
6 changes: 3 additions & 3 deletions python/pyspark/ml/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,8 +160,8 @@ def fit(self, dataset, params=None):
else:
return self._fit(dataset)
else:
raise ValueError("Params must be either a param map or a list/tuple of param maps, "
"but got %s." % type(params))
raise TypeError("Params must be either a param map or a list/tuple of param maps, "
"but got %s." % type(params))


@inherit_doc
Expand Down Expand Up @@ -216,7 +216,7 @@ def transform(self, dataset, params=None):
else:
return self._transform(dataset)
else:
raise ValueError("Params must be a param map but got %s." % type(params))
raise TypeError("Params must be a param map but got %s." % type(params))


@inherit_doc
Expand Down
10 changes: 5 additions & 5 deletions python/pyspark/ml/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -759,7 +759,7 @@ def evaluate(self, dataset):
Test dataset to evaluate model on.
"""
if not isinstance(dataset, DataFrame):
raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
raise TypeError("dataset must be a DataFrame but got %s." % type(dataset))
java_lsvc_summary = self._call_java("evaluate", dataset)
return LinearSVCSummary(java_lsvc_summary)

Expand Down Expand Up @@ -1263,7 +1263,7 @@ def evaluate(self, dataset):
Test dataset to evaluate model on.
"""
if not isinstance(dataset, DataFrame):
raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
raise TypeError("dataset must be a DataFrame but got %s." % type(dataset))
java_blr_summary = self._call_java("evaluate", dataset)
if self.numClasses <= 2:
return BinaryLogisticRegressionSummary(java_blr_summary)
Expand Down Expand Up @@ -1869,7 +1869,7 @@ def evaluate(self, dataset):
Test dataset to evaluate model on.
"""
if not isinstance(dataset, DataFrame):
raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
raise TypeError("dataset must be a DataFrame but got %s." % type(dataset))
java_rf_summary = self._call_java("evaluate", dataset)
if self.numClasses <= 2:
return BinaryRandomForestClassificationSummary(java_rf_summary)
Expand Down Expand Up @@ -2722,7 +2722,7 @@ def evaluate(self, dataset):
Test dataset to evaluate model on.
"""
if not isinstance(dataset, DataFrame):
raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
raise TypeError("dataset must be a DataFrame but got %s." % type(dataset))
java_mlp_summary = self._call_java("evaluate", dataset)
return MultilayerPerceptronClassificationSummary(java_mlp_summary)

Expand Down Expand Up @@ -3521,7 +3521,7 @@ def evaluate(self, dataset):
Test dataset to evaluate model on.
"""
if not isinstance(dataset, DataFrame):
raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
raise TypeError("dataset must be a DataFrame but got %s." % type(dataset))
java_fm_summary = self._call_java("evaluate", dataset)
return FMClassificationSummary(java_fm_summary)

Expand Down
2 changes: 1 addition & 1 deletion python/pyspark/ml/evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def evaluate(self, dataset, params=None):
else:
return self._evaluate(dataset)
else:
raise ValueError("Params must be a param map but got %s." % type(params))
raise TypeError("Params must be a param map but got %s." % type(params))

@since("1.5.0")
def isLargerBetter(self):
Expand Down
2 changes: 1 addition & 1 deletion python/pyspark/ml/param/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -435,7 +435,7 @@ def _resolveParam(self, param):
elif isinstance(param, str):
return self.getParam(param)
else:
raise ValueError("Cannot resolve %r as a param." % param)
raise TypeError("Cannot resolve %r as a param." % param)

def _testOwnParam(self, param_parent, param_name):
"""
Expand Down
4 changes: 2 additions & 2 deletions python/pyspark/ml/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -371,7 +371,7 @@ def evaluate(self, dataset):
instance of :py:class:`pyspark.sql.DataFrame`
"""
if not isinstance(dataset, DataFrame):
raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
raise TypeError("dataset must be a DataFrame but got %s." % type(dataset))
java_lr_summary = self._call_java("evaluate", dataset)
return LinearRegressionSummary(java_lr_summary)

Expand Down Expand Up @@ -2294,7 +2294,7 @@ def evaluate(self, dataset):
instance of :py:class:`pyspark.sql.DataFrame`
"""
if not isinstance(dataset, DataFrame):
raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
raise TypeError("dataset must be a DataFrame but got %s." % type(dataset))
java_glr_summary = self._call_java("evaluate", dataset)
return GeneralizedLinearRegressionSummary(java_glr_summary)

Expand Down
23 changes: 18 additions & 5 deletions python/pyspark/ml/tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,15 @@

from pyspark.sql.types import DoubleType, IntegerType
from pyspark.testing.mlutils import MockDataset, MockEstimator, MockUnaryTransformer, \
SparkSessionTestCase
MockTransformer, SparkSessionTestCase


class TransformerTests(unittest.TestCase):

def test_transform_invalid_type(self):
transformer = MockTransformer()
data = MockDataset()
self.assertRaises(TypeError, transformer.transform, data, "")


class UnaryTransformerTests(SparkSessionTestCase):
Expand Down Expand Up @@ -52,13 +60,18 @@ def test_unary_transformer_transform(self):


class EstimatorTest(unittest.TestCase):
def setUp(self):
self.estimator = MockEstimator()
self.data = MockDataset()

def test_fit_invalid_params(self):
invalid_type_parms = ""
self.assertRaises(TypeError, self.estimator.fit, self.data, invalid_type_parms)

def testDefaultFitMultiple(self):
N = 4
data = MockDataset()
estimator = MockEstimator()
params = [{estimator.fake: i} for i in range(N)]
modelIter = estimator.fitMultiple(data, params)
params = [{self.estimator.fake: i} for i in range(N)]
modelIter = self.estimator.fitMultiple(self.data, params)
indexList = []
for index, model in modelIter:
self.assertEqual(model.getFake(), index)
Expand Down
6 changes: 6 additions & 0 deletions python/pyspark/ml/tests/test_evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,12 @@

class EvaluatorTests(SparkSessionTestCase):

def test_evaluate_invalid_type(self):
evaluator = RegressionEvaluator(metricName="r2")
df = self.spark.createDataFrame([Row(label=1.0, prediction=1.1)])
invalid_type = ""
self.assertRaises(TypeError, evaluator.evaluate, df, invalid_type)

def test_java_params(self):
"""
This tests a bug fixed by SPARK-18274 which causes multiple copies
Expand Down
15 changes: 15 additions & 0 deletions python/pyspark/ml/tests/test_param.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
from pyspark.ml.linalg import DenseVector, SparseVector, Vectors
from pyspark.ml.param import Param, Params, TypeConverters
from pyspark.ml.param.shared import HasInputCol, HasMaxIter, HasSeed
from pyspark.ml.regression import LinearRegressionModel, GeneralizedLinearRegressionModel
from pyspark.ml.wrapper import JavaParams
from pyspark.testing.mlutils import check_params, PySparkTestCase, SparkSessionTestCase

Expand Down Expand Up @@ -197,6 +198,10 @@ def test_resolveparam(self):
self.assertEqual(testParams._resolveParam(u"maxIter"), testParams.maxIter)
self.assertRaises(AttributeError, lambda: testParams._resolveParam(u"아"))

# Invalid type
invalid_type = 1
self.assertRaises(TypeError, testParams._resolveParam, invalid_type)

def test_params(self):
testParams = TestParams()
maxIter = testParams.maxIter
Expand Down Expand Up @@ -332,6 +337,16 @@ def test_default_params_transferred(self):
self.assertFalse(binarizer.isSet(binarizer.outputCol))
self.assertEqual(result[0][0], 1.0)

def test_lr_evaluate_invaild_type(self):
lr = LinearRegressionModel()
invalid_type = ""
self.assertRaises(TypeError, lr.evaluate, invalid_type)

def test_glr_evaluate_invaild_type(self):
glr = GeneralizedLinearRegressionModel()
invalid_type = ""
self.assertRaises(TypeError, glr.evaluate, invalid_type)


class DefaultValuesTests(PySparkTestCase):
"""
Expand Down
6 changes: 2 additions & 4 deletions python/pyspark/mllib/linalg/distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -465,8 +465,7 @@ def multiply(self, matrix):
[DenseVector([2.0, 3.0]), DenseVector([6.0, 11.0])]
"""
if not isinstance(matrix, DenseMatrix):
raise ValueError("Only multiplication with DenseMatrix "
"is supported.")
raise TypeError("Only multiplication with DenseMatrix is supported.")
j_model = self._java_matrix_wrapper.call("multiply", matrix)
return RowMatrix(j_model)

Expand Down Expand Up @@ -854,8 +853,7 @@ def multiply(self, matrix):
[IndexedRow(0, [2.0,3.0]), IndexedRow(1, [6.0,11.0])]
"""
if not isinstance(matrix, DenseMatrix):
raise ValueError("Only multiplication with DenseMatrix "
"is supported.")
raise TypeError("Only multiplication with DenseMatrix is supported.")
return IndexedRowMatrix(self._java_matrix_wrapper.call("multiply", matrix))


Expand Down
13 changes: 12 additions & 1 deletion python/pyspark/mllib/tests/test_linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
Vector, SparseVector, DenseVector, VectorUDT, _convert_to_vector,
DenseMatrix, SparseMatrix, Vectors, Matrices, MatrixUDT
)
from pyspark.mllib.linalg.distributed import RowMatrix, IndexedRowMatrix
from pyspark.mllib.linalg.distributed import RowMatrix, IndexedRowMatrix, IndexedRow
from pyspark.mllib.regression import LabeledPoint
from pyspark.sql import Row
from pyspark.testing.mllibutils import MLlibTestCase
Expand Down Expand Up @@ -452,6 +452,17 @@ def test_indexed_row_matrix_from_dataframe(self):
with self.assertRaises(IllegalArgumentException):
IndexedRowMatrix(df.drop("_1"))

def test_row_matrix_invalid_type(self):
rows = self.sc.parallelize([[1, 2, 3], [4, 5, 6]])
invalid_type = ""
matrix = RowMatrix(rows)
self.assertRaises(TypeError, matrix.multiply, invalid_type)

irows = self.sc.parallelize([IndexedRow(0, [1, 2, 3]),
IndexedRow(1, [4, 5, 6])])
imatrix = IndexedRowMatrix(irows)
self.assertRaises(TypeError, imatrix.multiply, invalid_type)


class MatrixUDTTests(MLlibTestCase):

Expand Down
4 changes: 2 additions & 2 deletions python/pyspark/pandas/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1498,7 +1498,7 @@ def shift(self, periods=1, fill_value=None) -> Union["Series", "Index"]:

def _shift(self, periods, fill_value, *, part_cols=()):
if not isinstance(periods, int):
raise ValueError("periods should be an int; however, got [%s]" % type(periods).__name__)
raise TypeError("periods should be an int; however, got [%s]" % type(periods).__name__)

col = self.spark.column
window = (
Expand Down Expand Up @@ -1828,7 +1828,7 @@ def take(self, indices) -> Union["Series", "Index"]:
)
"""
if not is_list_like(indices) or isinstance(indices, (dict, set)):
raise ValueError("`indices` must be a list-like except dict or set")
raise TypeError("`indices` must be a list-like except dict or set")
if isinstance(self, ps.Series):
return cast(ps.Series, self.iloc[indices])
else:
Expand Down
4 changes: 2 additions & 2 deletions python/pyspark/pandas/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ class Option:
>>> option.validate('abc') # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: The value for option 'option.name' was <class 'str'>;
TypeError: The value for option 'option.name' was <class 'str'>;
however, expected types are [(<class 'float'>, <class 'int'>)].

>>> option.validate(-1.1)
Expand Down Expand Up @@ -101,7 +101,7 @@ def validate(self, v: Any) -> None:
Validate the given value and throw an exception with related information such as key.
"""
if not isinstance(v, self.types):
raise ValueError(
raise TypeError(
"The value for option '%s' was %s; however, expected types are "
"[%s]." % (self.key, type(v), str(self.types))
)
Expand Down
Loading