Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
18 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Added some tests for passing lists as input, and added mllib/tests.py to
run-tests script.
  • Loading branch information
mateiz committed Apr 15, 2014
commit c48e85aa515d2139fe77a1b4e57c64d8362bafc5
151 changes: 127 additions & 24 deletions python/pyspark/mllib/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
from pyspark.mllib._common import _convert_vector, _serialize_double_vector, \
_deserialize_double_vector, _dot, _squared_distance
from pyspark.mllib.linalg import SparseVector
from pyspark.mllib.regression import LabeledPoint
from pyspark.tests import PySparkTestCase


Expand All @@ -41,16 +42,21 @@ class VectorTests(unittest.TestCase):
def test_serialize(self):
sv = SparseVector(4, {1: 1, 3: 2})
dv = array([1., 2., 3., 4.])
lst = [1, 2, 3, 4]
self.assertTrue(sv is _convert_vector(sv))
self.assertTrue(dv is _convert_vector(dv))
self.assertTrue(array_equal(dv, _convert_vector(lst)))
self.assertEquals(sv,
_deserialize_double_vector(_serialize_double_vector(sv)))
self.assertTrue(array_equal(dv,
_deserialize_double_vector(_serialize_double_vector(dv))))
self.assertTrue(array_equal(dv,
_deserialize_double_vector(_serialize_double_vector(lst))))

def test_dot(self):
sv = SparseVector(4, {1: 1, 3: 2})
dv = array([1., 2., 3., 4.])
lst = [1, 2, 3, 4]
mat = array([[1., 2., 3., 4.],
[1., 2., 3., 4.],
[1., 2., 3., 4.],
Expand All @@ -59,10 +65,109 @@ def test_dot(self):
self.assertTrue(array_equal(array([3., 6., 9., 12.]), _dot(sv, mat)))
self.assertEquals(30.0, _dot(dv, dv))
self.assertTrue(array_equal(array([10., 20., 30., 40.]), _dot(dv, mat)))
self.assertEquals(30.0, _dot(lst, dv))
self.assertTrue(array_equal(array([10., 20., 30., 40.]), _dot(lst, mat)))

def test_squared_distance(self):
sv = SparseVector(4, {1: 1, 3: 2})
dv = array([1., 2., 3., 4.])
lst = [4, 3, 2, 1]
self.assertEquals(15.0, _squared_distance(sv, dv))
self.assertEquals(25.0, _squared_distance(sv, lst))
self.assertEquals(20.0, _squared_distance(dv, lst))
self.assertEquals(15.0, _squared_distance(dv, sv))
self.assertEquals(25.0, _squared_distance(lst, sv))
self.assertEquals(20.0, _squared_distance(lst, dv))
self.assertEquals(0.0, _squared_distance(sv, sv))
self.assertEquals(0.0, _squared_distance(dv, dv))
self.assertEquals(0.0, _squared_distance(lst, lst))


class ListTests(PySparkTestCase):
"""
Test MLlib algorithms on plain lists, to make sure they're passed through
as NumPy arrays.
"""

def test_clustering(self):
from pyspark.mllib.clustering import KMeans
data = [
[0, 1.1],
[0, 1.2],
[1.1, 0],
[1.2, 0],
]
clusters = KMeans.train(self.sc.parallelize(data), 2, initializationMode="k-means||")
self.assertEquals(clusters.predict(data[0]), clusters.predict(data[1]))
self.assertEquals(clusters.predict(data[2]), clusters.predict(data[3]))

def test_classification(self):
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes
data = [
LabeledPoint(0.0, [1, 0]),
LabeledPoint(1.0, [0, 1]),
LabeledPoint(0.0, [2, 0]),
LabeledPoint(1.0, [0, 2])
]
rdd = self.sc.parallelize(data)
features = [p.features.tolist() for p in data]

lr_model = LogisticRegressionWithSGD.train(rdd)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)

svm_model = SVMWithSGD.train(rdd)
self.assertTrue(svm_model.predict(features[0]) <= 0)
self.assertTrue(svm_model.predict(features[1]) > 0)
self.assertTrue(svm_model.predict(features[2]) <= 0)
self.assertTrue(svm_model.predict(features[3]) > 0)

nb_model = NaiveBayes.train(rdd)
self.assertTrue(nb_model.predict(features[0]) <= 0)
self.assertTrue(nb_model.predict(features[1]) > 0)
self.assertTrue(nb_model.predict(features[2]) <= 0)
self.assertTrue(nb_model.predict(features[3]) > 0)

def test_regression(self):
from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \
RidgeRegressionWithSGD
data = [
LabeledPoint(-1.0, [0, -1]),
LabeledPoint(1.0, [0, 1]),
LabeledPoint(-1.0, [0, -2]),
LabeledPoint(1.0, [0, 2])
]
rdd = self.sc.parallelize(data)
features = [p.features.tolist() for p in data]

lr_model = LinearRegressionWithSGD.train(rdd)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)

lasso_model = LassoWithSGD.train(rdd)
self.assertTrue(lasso_model.predict(features[0]) <= 0)
self.assertTrue(lasso_model.predict(features[1]) > 0)
self.assertTrue(lasso_model.predict(features[2]) <= 0)
self.assertTrue(lasso_model.predict(features[3]) > 0)

rr_model = RidgeRegressionWithSGD.train(rdd)
self.assertTrue(rr_model.predict(features[0]) <= 0)
self.assertTrue(rr_model.predict(features[1]) > 0)
self.assertTrue(rr_model.predict(features[2]) <= 0)
self.assertTrue(rr_model.predict(features[3]) > 0)


@unittest.skipIf(not _have_scipy, "SciPy not installed")
class SciPyTests(PySparkTestCase):
"""
Test both vector operations and MLlib algorithms with SciPy sparse matrices,
if SciPy is available.
"""

def test_serialize(self):
from scipy.sparse import lil_matrix
lil = lil_matrix((4, 1))
Expand Down Expand Up @@ -132,63 +237,61 @@ def test_clustering(self):
def test_classification(self):
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes
data = [
self.scipy_matrix(3, {0: 0.0, 2: 0.0}),
self.scipy_matrix(3, {0: 1.0, 2: 1.0}),
self.scipy_matrix(3, {0: 0.0, 2: 0.0}),
self.scipy_matrix(3, {0: 1.0, 2: 2.0})
LabeledPoint(0.0, self.scipy_matrix(2, {0: 1.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 1.0})),
LabeledPoint(0.0, self.scipy_matrix(2, {0: 2.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 2.0}))
]
rdd = self.sc.parallelize(data)
features = [
self.scipy_matrix(2, {1: 0.0}),
self.scipy_matrix(2, {1: 1.0}),
self.scipy_matrix(2, {1: 2.0}),
]
features = [p.features for p in data]

lr_model = LogisticRegressionWithSGD.train(rdd)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)

svm_model = SVMWithSGD.train(rdd)
self.assertTrue(svm_model.predict(features[0]) <= 0)
self.assertTrue(svm_model.predict(features[1]) > 0)
self.assertTrue(svm_model.predict(features[2]) > 0)
self.assertTrue(svm_model.predict(features[2]) <= 0)
self.assertTrue(svm_model.predict(features[3]) > 0)

nb_model = NaiveBayes.train(rdd)
self.assertTrue(nb_model.predict(features[0]) <= 0)
self.assertTrue(nb_model.predict(features[1]) > 0)
self.assertTrue(nb_model.predict(features[2]) > 0)
self.assertTrue(nb_model.predict(features[2]) <= 0)
self.assertTrue(nb_model.predict(features[3]) > 0)

def test_regression(self):
from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \
RidgeRegressionWithSGD
data = [
self.scipy_matrix(3, {0: -1.0, 2: -1.0}),
self.scipy_matrix(3, {0: 1.0, 2: 1.0}),
self.scipy_matrix(3, {0: -1.0, 2: -2.0}),
self.scipy_matrix(3, {0: 1.0, 2: 2.0})
LabeledPoint(-1.0, self.scipy_matrix(2, {1: -1.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 1.0})),
LabeledPoint(-1.0, self.scipy_matrix(2, {1: -2.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 2.0}))
]
rdd = self.sc.parallelize(data)
features = [
self.scipy_matrix(2, {1: -1.0}),
self.scipy_matrix(2, {1: 1.0}),
self.scipy_matrix(2, {1: 2.0}),
]
features = [p.features for p in data]

lr_model = LinearRegressionWithSGD.train(rdd)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)

lasso_model = LassoWithSGD.train(rdd)
self.assertTrue(lasso_model.predict(features[0]) <= 0)
self.assertTrue(lasso_model.predict(features[1]) > 0)
self.assertTrue(lasso_model.predict(features[2]) > 0)
self.assertTrue(lasso_model.predict(features[2]) <= 0)
self.assertTrue(lasso_model.predict(features[3]) > 0)

rr_model = RidgeRegressionWithSGD.train(rdd)
self.assertTrue(rr_model.predict(features[0]) <= 0)
self.assertTrue(rr_model.predict(features[1]) > 0)
self.assertTrue(rr_model.predict(features[2]) > 0)
self.assertTrue(rr_model.predict(features[2]) <= 0)
self.assertTrue(rr_model.predict(features[3]) > 0)


if __name__ == "__main__":
Expand Down
1 change: 1 addition & 0 deletions python/run-tests
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ run_test "pyspark/mllib/clustering.py"
run_test "pyspark/mllib/linalg.py"
run_test "pyspark/mllib/recommendation.py"
run_test "pyspark/mllib/regression.py"
run_test "pyspark/mllib/tests.py"

if [[ $FAILED == 0 ]]; then
echo -en "\033[32m" # Green
Expand Down