Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 72 additions & 68 deletions python/pyspark/sql/tests/streaming/test_streaming_foreach_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,46 +97,48 @@ def func(batch_df, _):

def test_streaming_foreach_batch_spark_session(self):
table_name = "testTable_foreach_batch"
with self.table(table_name):

def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
spark = df.sparkSession
df1 = spark.createDataFrame([("structured",), ("streaming",)])
df1.union(df).write.mode("append").saveAsTable(table_name)
def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
spark = df.sparkSession
df1 = spark.createDataFrame([("structured",), ("streaming",)])
df1.union(df).write.mode("append").saveAsTable(table_name)

df = self.spark.readStream.format("text").load("python/test_support/sql/streaming")
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()
df = self.spark.readStream.format("text").load("python/test_support/sql/streaming")
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()

actual = self.spark.read.table(table_name)
df = (
self.spark.read.format("text")
.load(path="python/test_support/sql/streaming/")
.union(self.spark.createDataFrame([("structured",), ("streaming",)]))
)
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))
actual = self.spark.read.table(table_name)
df = (
self.spark.read.format("text")
.load(path="python/test_support/sql/streaming/")
.union(self.spark.createDataFrame([("structured",), ("streaming",)]))
)
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))

def test_streaming_foreach_batch_path_access(self):
table_name = "testTable_foreach_batch_path"
with self.table(table_name):

def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
spark = df.sparkSession
df1 = spark.read.format("text").load("python/test_support/sql/streaming")
df1.union(df).write.mode("append").saveAsTable(table_name)
def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
spark = df.sparkSession
df1 = spark.read.format("text").load("python/test_support/sql/streaming")
df1.union(df).write.mode("append").saveAsTable(table_name)

df = self.spark.readStream.format("text").load("python/test_support/sql/streaming")
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()
df = self.spark.readStream.format("text").load("python/test_support/sql/streaming")
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()

actual = self.spark.read.table(table_name)
df = self.spark.read.format("text").load(path="python/test_support/sql/streaming/")
df = df.union(df)
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))
actual = self.spark.read.table(table_name)
df = self.spark.read.format("text").load(path="python/test_support/sql/streaming/")
df = df.union(df)
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))

@staticmethod
def my_test_function_2():
Expand All @@ -147,56 +149,58 @@ def my_test_function_3():
return 3

table_name = "testTable_foreach_batch_function"
with self.table(table_name):

def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
spark = df.sparkSession
df1 = spark.createDataFrame(
[
(my_test_function_1(),),
(StreamingTestsForeachBatchMixin.my_test_function_2(),),
(my_test_function_3(),),
]
)
df1.write.mode("append").saveAsTable(table_name)

df = self.spark.readStream.format("rate").load()
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()

def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
spark = df.sparkSession
df1 = spark.createDataFrame(
actual = self.spark.read.table(table_name)
df = self.spark.createDataFrame(
[
(my_test_function_1(),),
(StreamingTestsForeachBatchMixin.my_test_function_2(),),
(my_test_function_3(),),
]
)
df1.write.mode("append").saveAsTable(table_name)

df = self.spark.readStream.format("rate").load()
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()

actual = self.spark.read.table(table_name)
df = self.spark.createDataFrame(
[
(my_test_function_1(),),
(StreamingTestsForeachBatchMixin.my_test_function_2(),),
(my_test_function_3(),),
]
)
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))

def test_streaming_foreach_batch_import(self):
import time # not imported in foreach_batch_worker

table_name = "testTable_foreach_batch_import"
with self.table(table_name):

def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
time.sleep(1)
spark = df.sparkSession
df1 = spark.read.format("text").load("python/test_support/sql/streaming")
df1.write.mode("append").saveAsTable(table_name)

df = self.spark.readStream.format("rate").load()
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()

def func(df: DataFrame, batch_id: int):
if batch_id > 0: # only process once
return
time.sleep(1)
spark = df.sparkSession
df1 = spark.read.format("text").load("python/test_support/sql/streaming")
df1.write.mode("append").saveAsTable(table_name)

df = self.spark.readStream.format("rate").load()
q = df.writeStream.foreachBatch(func).start()
q.processAllAvailable()
q.stop()

actual = self.spark.read.table(table_name)
df = self.spark.read.format("text").load("python/test_support/sql/streaming")
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))
actual = self.spark.read.table(table_name)
df = self.spark.read.format("text").load("python/test_support/sql/streaming")
self.assertEqual(sorted(df.collect()), sorted(actual.collect()))


class StreamingTestsForeachBatch(StreamingTestsForeachBatchMixin, ReusedSQLTestCase):
Expand Down