Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 17 additions & 16 deletions docs/mllib-clustering.md
Original file line number Diff line number Diff line change
Expand Up @@ -204,19 +204,20 @@ calling `.rdd()` on your `JavaRDD` object. A self-contained application example
that is equivalent to the provided example in Scala is given below:

{% highlight java %}
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.clustering.GaussianMixture;
import org.apache.spark.mllib.clustering.GaussianMixtureModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.SparkConf;

public class GaussianMixtureExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("GaussianMixture Example");
JavaSparkContext sc = new JavaSparkContext(conf);

import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.clustering.GaussianMixture;
import org.apache.spark.mllib.clustering.GaussianMixtureModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.SparkConf;

public class GaussianMixtureExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("GaussianMixture Example");
JavaSparkContext sc = new JavaSparkContext(conf);

// Load and parse data
String path = "data/mllib/gmm_data.txt";
JavaRDD<String> data = sc.textFile(path);
Expand All @@ -232,20 +233,20 @@ public class GaussianMixtureExample {
}
);
parsedData.cache();

// Cluster the data into two classes using GaussianMixture
GaussianMixtureModel gmm = new GaussianMixture().setK(2).run(parsedData.rdd());

// Save and load GaussianMixtureModel
gmm.save(sc, "myGMMModel")
GaussianMixtureModel sameModel = GaussianMixtureModel.load(sc, "myGMMModel")
// Output the parameters of the mixture model
for(int j=0; j<gmm.k(); j++) {
System.out.println("weight=%f\nmu=%s\nsigma=\n%s\n",
gmm.weights()[j], gmm.gaussians()[j].mu(), gmm.gaussians()[j].sigma());
}
}
}
}
}
{% endhighlight %}
</div>

Expand Down