Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 114 additions & 0 deletions docs/ml-features.md
Original file line number Diff line number Diff line change
Expand Up @@ -964,5 +964,119 @@ DataFrame transformedData = transformer.transform(dataFrame);
</div>
</div>

## VectorAssembler

`VectorAssembler` is a transformer that combines a given list of columns into a single vector
column.
It is useful for combining raw features and features generated by different feature transformers
into a single feature vector, in order to train ML models like logistic regression and decision
trees.
`VectorAssembler` accepts the following input column types: all numeric types, boolean type,
and vector type.
In each row, the values of the input columns will be concatenated into a vector in the specified
order.

**Examples**

Assume that we have a DataFrame with the columns `id`, `hour`, `mobile`, `userFeatures`,
and `clicked`:

~~~
id | hour | mobile | userFeatures | clicked
----|------|--------|------------------|---------
0 | 18 | 1.0 | [0.0, 10.0, 0.5] | 1.0
~~~

`userFeatures` is a vector column that contains three user features.
We want to combine `hour`, `mobile`, and `userFeatures` into a single feature vector
called `features` and use it to predict `clicked` or not.
If we set `VectorAssembler`'s input columns to `hour`, `mobile`, and `userFeatures` and
output column to `features`, after transformation we should get the following DataFrame:

~~~
id | hour | mobile | userFeatures | clicked | features
----|------|--------|------------------|---------|-----------------------------
0 | 18 | 1.0 | [0.0, 10.0, 0.5] | 1.0 | [18.0, 1.0, 0.0, 10.0, 0.5]
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

[`VectorAssembler`](api/scala/index.html#org.apache.spark.ml.feature.VectorAssembler) takes an array
of input column names and an output column name.

{% highlight scala %}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler

val dataset = sqlContext.createDataFrame(
Seq((0, 18, 1.0, Vectors.dense(0.0, 10.0, 0.5), 1.0))
).toDF("id", "hour", "mobile", "userFeatures", "clicked")
val assembler = new VectorAssembler()
.setInputCols(Array("hour", "mobile", "userFeatures"))
.setOutputCol("features")
val output = assembler.transform(dataset)
println(output.select("features", "clicked").first())
{% endhighlight %}
</div>

<div data-lang="java" markdown="1">

[`VectorAssembler`](api/java/org/apache/spark/ml/feature/VectorAssembler.html) takes an array
of input column names and an output column name.

{% highlight java %}
import java.util.Arrays;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;
import static org.apache.spark.sql.types.DataTypes.*;

StructType schema = createStructType(new StructField[] {
createStructField("id", IntegerType, false),
createStructField("hour", IntegerType, false),
createStructField("mobile", DoubleType, false),
createStructField("userFeatures", new VectorUDT(), false),
createStructField("clicked", DoubleType, false)
});
Row row = RowFactory.create(0, 18, 1.0, Vectors.dense(0.0, 10.0, 0.5), 1.0);
JavaRDD<Row> rdd = jsc.parallelize(Arrays.asList(row));
DataFrame dataset = sqlContext.createDataFrame(rdd, schema);

VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[] {"hour", "mobile", "userFeatures"})
.setOutputCol("features");

DataFrame output = assembler.transform(dataset);
System.out.println(output.select("features", "clicked").first());
{% endhighlight %}
</div>

<div data-lang="python" markdown="1">

[`VectorAssembler`](api/python/pyspark.ml.html#pyspark.ml.feature.VectorAssembler) takes a list
of input column names and an output column name.

{% highlight python %}
from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

dataset = sqlContext.createDataFrame(
[(0, 18, 1.0, Vectors.dense([0.0, 10.0, 0.5]), 1.0)],
["id", "hour", "mobile", "userFeatures", "clicked"])
assembler = VectorAssembler(
inputCols=["hour", "mobile", "userFeatures"],
outputCol="features")
output = assembler.transform(dataset)
print(output.select("features", "clicked").first())
{% endhighlight %}
</div>
</div>

# Feature Selectors

Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.ml.feature;

import java.util.Arrays;

import org.junit.After;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;
import static org.apache.spark.sql.types.DataTypes.*;

public class JavaVectorAssemblerSuite {
private transient JavaSparkContext jsc;
private transient SQLContext sqlContext;

@Before
public void setUp() {
jsc = new JavaSparkContext("local", "JavaVectorAssemblerSuite");
sqlContext = new SQLContext(jsc);
}

@After
public void tearDown() {
jsc.stop();
jsc = null;
}

@Test
public void testVectorAssembler() {
StructType schema = createStructType(new StructField[] {
createStructField("id", IntegerType, false),
createStructField("x", DoubleType, false),
createStructField("y", new VectorUDT(), false),
createStructField("name", StringType, false),
createStructField("z", new VectorUDT(), false),
createStructField("n", LongType, false)
});
Row row = RowFactory.create(
0, 0.0, Vectors.dense(1.0, 2.0), "a",
Vectors.sparse(2, new int[] {1}, new double[] {3.0}), 10L);
JavaRDD<Row> rdd = jsc.parallelize(Arrays.asList(row));
DataFrame dataset = sqlContext.createDataFrame(rdd, schema);
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[] {"x", "y", "z", "n"})
.setOutputCol("features");
DataFrame output = assembler.transform(dataset);
Assert.assertEquals(
Vectors.sparse(6, new int[] {1, 2, 4, 5}, new double[] {1.0, 2.0, 3.0, 10.0}),
output.select("features").first().<Vector>getAs(0));
}
}