-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-8777] [SQL] Add random data generator test utilities to Spark SQL #7176
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 1 commit
d2b4a4a
ab76cbd
5acdd5c
b55875a
0c20905
89d86b1
e0d7d49
f71634d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
- Loading branch information
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -17,17 +17,54 @@ | |
|
|
||
| package org.apache.spark.sql | ||
|
|
||
| import java.sql.Timestamp | ||
| import java.lang.Double.longBitsToDouble | ||
| import java.lang.Float.intBitsToFloat | ||
| import java.math.MathContext | ||
|
|
||
| import org.scalacheck.{Arbitrary, Gen} | ||
| import scala.util.Random | ||
|
|
||
| import org.apache.spark.sql.types._ | ||
|
|
||
| /** | ||
| * ScalaCheck random data generators for Spark SQL DataTypes. | ||
| * Random data generators for Spark SQL DataTypes. These generators do not generate uniformly random | ||
| * values; instead, they're biased to return "interesting" values (such as maximum / minimum values) | ||
| * with higher probability. | ||
| */ | ||
| object RandomDataGenerator { | ||
|
|
||
| /** | ||
| * The conditional probability of a non-null value being drawn from a set of "interesting" values | ||
| * instead of being chosen uniformly at random. | ||
| */ | ||
| private val PROBABILITY_OF_INTERESTING_VALUE: Float = 0.5f | ||
|
|
||
| /** | ||
| * The probability of the generated value being null | ||
| */ | ||
| private val PROBABILITY_OF_NULL: Float = 0.1f | ||
|
|
||
| private val MAX_STR_LEN: Int = 1024 | ||
| private val MAX_ARR_SIZE: Int = 128 | ||
| private val MAX_MAP_SIZE: Int = 128 | ||
|
|
||
| /** | ||
| * Helper function for constructing a biased random number generator which returns "interesting" | ||
| * values with a higher probability. | ||
| */ | ||
| private def randomNumeric[T]( | ||
| rand: Random, | ||
| uniformRand: Random => T, | ||
| interestingValues: Seq[T]): Some[() => T] = { | ||
| val f = () => { | ||
| if (rand.nextFloat() <= PROBABILITY_OF_INTERESTING_VALUE) { | ||
| interestingValues(rand.nextInt(interestingValues.length)) | ||
| } else { | ||
| uniformRand(rand) | ||
| } | ||
| } | ||
| Some(f) | ||
| } | ||
|
|
||
| /** | ||
| * Returns a function which generates random values for the given [[DataType]], or `None` if no | ||
| * random data generator is defined for that data type. The generated values will use an external | ||
|
|
@@ -37,58 +74,85 @@ object RandomDataGenerator { | |
| * | ||
| * @param dataType the type to generate values for | ||
| * @param nullable whether null values should be generated | ||
| * @return a ScalaCheck [[Gen]] which can be used to produce random values. | ||
| * @param seed an optional seed for the random number generator | ||
| * @return a function which can be called to generate random values. | ||
| */ | ||
| def forType( | ||
| dataType: DataType, | ||
| nullable: Boolean = true): Option[Gen[Any]] = { | ||
| val valueGenerator: Option[Gen[Any]] = dataType match { | ||
| case StringType => Some(Arbitrary.arbitrary[String]) | ||
| case BinaryType => Some(Gen.listOf(Arbitrary.arbitrary[Byte]).map(_.toArray)) | ||
| case BooleanType => Some(Arbitrary.arbitrary[Boolean]) | ||
| case DateType => Some(Arbitrary.arbitrary[Int].suchThat(_ >= 0).map(new java.sql.Date(_))) | ||
| case DoubleType => Some(Arbitrary.arbitrary[Double]) | ||
| case FloatType => Some(Arbitrary.arbitrary[Float]) | ||
| case ByteType => Some(Arbitrary.arbitrary[Byte]) | ||
| case IntegerType => Some(Arbitrary.arbitrary[Int]) | ||
| case LongType => Some(Arbitrary.arbitrary[Long]) | ||
| case ShortType => Some(Arbitrary.arbitrary[Short]) | ||
| case NullType => Some(Gen.const[Any](null)) | ||
| case TimestampType => Some(Arbitrary.arbitrary[Long].suchThat(_ >= 0).map(new Timestamp(_))) | ||
| case DecimalType.Unlimited => Some(Arbitrary.arbitrary[BigDecimal]) | ||
| nullable: Boolean = true, | ||
| seed: Option[Long] = None): Option[() => Any] = { | ||
| val rand = new Random() | ||
| seed.foreach(rand.setSeed) | ||
|
|
||
| val valueGenerator: Option[() => Any] = dataType match { | ||
| case StringType => Some(() => rand.nextString(rand.nextInt(MAX_STR_LEN))) | ||
| case BinaryType => Some(() => { | ||
| val arr = new Array[Byte](rand.nextInt(MAX_STR_LEN)) | ||
| rand.nextBytes(arr) | ||
| arr | ||
| }) | ||
| case BooleanType => Some(() => rand.nextBoolean()) | ||
| case DateType => Some(() => new java.sql.Date(rand.nextInt())) | ||
| case TimestampType => Some(() => new java.sql.Timestamp(rand.nextLong())) | ||
| case DecimalType.Unlimited => Some( | ||
| () => BigDecimal.apply(rand.nextLong, rand.nextInt, MathContext.UNLIMITED)) | ||
| case DoubleType => randomNumeric[Double]( | ||
| rand, r => longBitsToDouble(r.nextLong()), Seq(Double.MinValue, Double.MinPositiveValue, | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Are we using This implies more chances than expected to generate NaNs. But it's probably OK?
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The goal here was to produce doubles that were uniformly distributed over the range of possible double values (`rand.nextDouble() just returns doubles in the range 0.0 to 1.0). Empirically, the number of NaNs produced by this seems to be quite small and a back-of-the-envelope calculation seems to back this up; I think that ((0x7fffffffffffffff - 0x7ff0000000000001) + (0xffffffffffffffff - 0xfff0000000000001)) / 2^64 works out to be a roughly 0.05% chance of producing a NaN through this method (see https://www.wolframalpha.com/input/?i=%28%280x7fffffffffffffff+-+0x7ff0000000000001%29+%2B+%280xffffffffffffffff+-+0xfff0000000000001%29%29+%2F+2%5E64). I think this is small enough to ignore for our purposes, but we can revisit later if it's a problem. |
||
| Double.MaxValue, Double.PositiveInfinity, Double.NegativeInfinity, Double.NaN, 0.0)) | ||
| case FloatType => randomNumeric[Float]( | ||
| rand, r => intBitsToFloat(r.nextInt()), Seq(Float.MinValue, Float.MinPositiveValue, | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Similar issue as above.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. See comment at #7176 (comment) |
||
| Float.MaxValue, Float.PositiveInfinity, Float.NegativeInfinity, Float.NaN, 0.0f)) | ||
| case ByteType => randomNumeric[Byte]( | ||
| rand, _.nextInt().toByte, Seq(Byte.MinValue, Byte.MaxValue, 0.toByte)) | ||
| case IntegerType => randomNumeric[Int]( | ||
| rand, _.nextInt(), Seq(Int.MinValue, Int.MaxValue, 0)) | ||
| case LongType => randomNumeric[Long]( | ||
| rand, _.nextLong(), Seq(Long.MinValue, Long.MaxValue, 0L)) | ||
| case ShortType => randomNumeric[Short]( | ||
| rand, _.nextInt().toShort, Seq(Short.MinValue, Short.MaxValue, 0.toShort)) | ||
| case NullType => Some(() => null) | ||
| case ArrayType(elementType, containsNull) => { | ||
| forType(elementType, nullable = containsNull).map { elementGen => | ||
| Gen.listOf(elementGen).map(_.toArray) | ||
| forType(elementType, nullable = containsNull, seed = Some(rand.nextLong())).map { | ||
| elementGenerator => () => Array.fill(rand.nextInt(MAX_ARR_SIZE))(elementGenerator()) | ||
| } | ||
| } | ||
| case MapType(keyType, valueType, valueContainsNull) => { | ||
| for ( | ||
| keyGenerator <- forType(keyType, nullable = false); | ||
| valueGenerator <- forType(valueType, nullable = valueContainsNull) | ||
| // Scala's BigDecimal.hashCode can lead to OutOfMemoryError on Scala 2.10 (see SI-6173) | ||
| // and Spark can hit NumberFormatException errors converting certain BigDecimals | ||
| // (SPARK-8802). For these reasons, we don't support generation of maps with decimal keys. | ||
| if !keyType.isInstanceOf[DecimalType] | ||
| keyGenerator <- forType(keyType, nullable = false, seed = Some(rand.nextLong())); | ||
| valueGenerator <- | ||
| forType(valueType, nullable = valueContainsNull, seed = Some(rand.nextLong())) | ||
| ) yield { | ||
| Gen.listOf(Gen.zip(keyGenerator, valueGenerator)).map(_.toMap) | ||
| () => { | ||
| Seq.fill(rand.nextInt(MAX_MAP_SIZE))((keyGenerator(), valueGenerator())).toMap | ||
| } | ||
| } | ||
| } | ||
| case StructType(fields) => { | ||
| val maybeFieldGenerators: Seq[Option[Gen[Any]]] = fields.map { field => | ||
| forType(field.dataType, nullable = field.nullable) | ||
| val maybeFieldGenerators: Seq[Option[() => Any]] = fields.map { field => | ||
| forType(field.dataType, nullable = field.nullable, seed = Some(rand.nextLong())) | ||
| } | ||
| if (maybeFieldGenerators.forall(_.isDefined)) { | ||
| Some(Gen.sequence[Seq[Any], Any](maybeFieldGenerators.flatten).map(vs => Row.fromSeq(vs))) | ||
| val fieldGenerators: Seq[() => Any] = maybeFieldGenerators.map(_.get) | ||
| Some(() => Row.fromSeq(fieldGenerators.map(_.apply()))) | ||
| } else { | ||
| None | ||
| } | ||
| } | ||
| case unsupportedType => None | ||
| } | ||
| if (nullable) { | ||
| valueGenerator.map(Gen.oneOf(_, Gen.const[Any](null))) | ||
| } else { | ||
| valueGenerator | ||
| // Handle nullability by wrapping the non-null value generator: | ||
| valueGenerator.map { valueGenerator => | ||
| if (nullable) { | ||
| () => { | ||
| if (rand.nextFloat() <= PROBABILITY_OF_NULL) { | ||
| null | ||
| } else { | ||
| valueGenerator() | ||
| } | ||
| } | ||
| } else { | ||
| valueGenerator | ||
| } | ||
| } | ||
| } | ||
| } | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -17,17 +17,14 @@ | |
|
|
||
| package org.apache.spark.sql | ||
|
|
||
| import org.scalacheck.Prop.{exists, forAll, secure} | ||
| import org.scalatest.prop.Checkers | ||
|
|
||
| import org.apache.spark.SparkFunSuite | ||
| import org.apache.spark.sql.catalyst.CatalystTypeConverters | ||
| import org.apache.spark.sql.types._ | ||
|
|
||
| /** | ||
| * Tests of [[RandomDataGenerator]]. | ||
| */ | ||
| class RandomDataGeneratorSuite extends SparkFunSuite with Checkers { | ||
| class RandomDataGeneratorSuite extends SparkFunSuite { | ||
|
|
||
| /** | ||
| * Tests random data generation for the given type by using it to generate random values then | ||
|
|
@@ -39,12 +36,14 @@ class RandomDataGeneratorSuite extends SparkFunSuite with Checkers { | |
| fail(s"Random data generator was not defined for $dataType") | ||
| } | ||
| if (nullable) { | ||
| check(exists(generator) { _ == null }) | ||
| assert(Iterator.fill(100)(generator()).contains(null)) | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Although the probability is quite low, but there is still a chance that we may break the assertion here(I just met one in a test...), I know it's not a big deal to rerun a test ,but can we pass in the
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ping @JoshRosen
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Increasing the size of the iterator and fixing the random seed seems like a good fix. Feel free to submit a PR and I'll review quickly. |
||
| } else { | ||
| assert(Iterator.fill(100)(generator()).forall(_ != null)) | ||
| } | ||
| if (!nullable) { | ||
| check(forAll(generator) { _ != null }) | ||
| for (_ <- 1 to 10) { | ||
| val generatedValue = generator() | ||
| toCatalyst(generatedValue) | ||
| } | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Should we throw an exception if no generator is defined for the given
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Good idea; this uncovered the fact that I forgot to implement a generator for Timestamp. |
||
| check(secure(forAll(generator) { v => { toCatalyst(v); true } })) | ||
| } | ||
|
|
||
| // Basic types: | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Does
nextStringcover unicode characters?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes.