Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
51 commits
Select commit Hold shift + click to select a range
cd53eae
skeletal framework
manishamde Nov 28, 2013
92cedce
basic building blocks for intermediate RDD calculation. untested.
manishamde Dec 2, 2013
8bca1e2
additional code for creating intermediate RDD
manishamde Dec 9, 2013
0012a77
basic stump working
manishamde Dec 10, 2013
03f534c
some more tests
manishamde Dec 10, 2013
dad0afc
decison stump functionality working
manishamde Dec 15, 2013
4798aae
added gain stats class
manishamde Dec 15, 2013
80e8c66
working version of multi-level split calculation
manishamde Dec 16, 2013
b0eb866
added logic to handle leaf nodes
manishamde Dec 16, 2013
98ec8d5
tree building and prediction logic
manishamde Dec 22, 2013
02c595c
added command line parsing
manishamde Dec 22, 2013
733d6dd
fixed tests
manishamde Dec 22, 2013
154aa77
enums for configurations
manishamde Dec 23, 2013
b0e3e76
adding enum for feature type
manishamde Jan 12, 2014
c8f6d60
adding enum for feature type
manishamde Jan 12, 2014
e23c2e5
added regression support
manishamde Jan 19, 2014
53108ed
fixing index for highest bin
manishamde Jan 20, 2014
6df35b9
regression predict logic
manishamde Jan 21, 2014
dbb7ac1
categorical feature support
manishamde Jan 23, 2014
d504eb1
more tests for categorical features
manishamde Jan 23, 2014
6b7de78
minor refactoring and tests
manishamde Jan 26, 2014
b09dc98
minor refactoring
manishamde Jan 26, 2014
c0e522b
updated predict and split threshold logic
manishamde Jan 27, 2014
f067d68
minor cleanup
manishamde Jan 27, 2014
5841c28
unit tests for categorical features
manishamde Jan 27, 2014
0dd7659
basic doc
manishamde Jan 27, 2014
dd0c0d7
minor: some docs
manishamde Jan 27, 2014
9372779
code style: max line lenght <= 100
manishamde Feb 17, 2014
84f85d6
code documentation
manishamde Feb 28, 2014
d3023b3
adding more docs for nested methods
manishamde Mar 6, 2014
63e786b
added multiple train methods for java compatability
manishamde Mar 6, 2014
cd2c2b4
fixing code style based on feedback
manishamde Mar 7, 2014
eb8fcbe
minor code style updates
manishamde Mar 7, 2014
794ff4d
minor improvements to docs and style
manishamde Mar 10, 2014
d1ef4f6
more documentation
manishamde Mar 10, 2014
ad1fc21
incorporated mengxr's code style suggestions
manishamde Mar 11, 2014
62c2562
fixing comment indentation
manishamde Mar 11, 2014
6068356
ensuring num bins is always greater than max number of categories
manishamde Mar 12, 2014
2116360
removing dummy bin calculation for categorical variables
manishamde Mar 12, 2014
632818f
removing threshold for classification predict method
manishamde Mar 13, 2014
ff363a7
binary search for bins and while loop for categorical feature bins
manishamde Mar 17, 2014
4576b64
documentation and for to while loop conversion
manishamde Mar 23, 2014
24500c5
minor style updates
mengxr Mar 23, 2014
c487e6a
Merge pull request #1 from mengxr/dtree
manishamde Mar 23, 2014
f963ef5
making methods private
manishamde Mar 23, 2014
201702f
making some more methods private
manishamde Mar 23, 2014
62dc723
updating javadoc and converting helper methods to package private to …
manishamde Mar 24, 2014
e1dd86f
implementing code style suggestions
manishamde Mar 25, 2014
f536ae9
another pass on code style
mengxr Mar 31, 2014
7d54b4f
Merge pull request #4 from mengxr/dtree
manishamde Mar 31, 2014
1e8c704
remove numBins field in the Strategy class
manishamde Apr 1, 2014
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
adding enum for feature type
Signed-off-by: Manish Amde <[email protected]>
  • Loading branch information
manishamde committed Feb 28, 2014
commit b0e3e76c47b1b449c91832aee2a6e94cee0a7c6b
43 changes: 23 additions & 20 deletions mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ import org.apache.spark.mllib.tree.model.Split
import scala.util.control.Breaks._
import org.apache.spark.mllib.tree.configuration.Strategy
import org.apache.spark.mllib.tree.configuration.QuantileStrategy._
import org.apache.spark.mllib.tree.configuration.FeatureType._


class DecisionTree(val strategy : Strategy) extends Serializable with Logging {
Expand Down Expand Up @@ -353,21 +354,13 @@ object DecisionTree extends Serializable with Logging {
def extractLeftRightNodeAggregates(binData: Array[Double]): (Array[Array[Double]], Array[Array[Double]]) = {
val leftNodeAgg = Array.ofDim[Double](numFeatures, 2 * (numSplits - 1))
val rightNodeAgg = Array.ofDim[Double](numFeatures, 2 * (numSplits - 1))
//logDebug("binData.length = " + binData.length)
//logDebug("binData.sum = " + binData.sum)
for (featureIndex <- 0 until numFeatures) {
//logDebug("featureIndex = " + featureIndex)
val shift = 2*featureIndex*numSplits
leftNodeAgg(featureIndex)(0) = binData(shift + 0)
//logDebug("binData(shift + 0) = " + binData(shift + 0))
leftNodeAgg(featureIndex)(1) = binData(shift + 1)
//logDebug("binData(shift + 1) = " + binData(shift + 1))
rightNodeAgg(featureIndex)(2 * (numSplits - 2)) = binData(shift + (2 * (numSplits - 1)))
//logDebug(binData(shift + (2 * (numSplits - 1))))
rightNodeAgg(featureIndex)(2 * (numSplits - 2) + 1) = binData(shift + (2 * (numSplits - 1)) + 1)
//logDebug(binData(shift + (2 * (numSplits - 1)) + 1))
for (splitIndex <- 1 until numSplits - 1) {
//logDebug("splitIndex = " + splitIndex)
leftNodeAgg(featureIndex)(2 * splitIndex)
= binData(shift + 2*splitIndex) + leftNodeAgg(featureIndex)(2 * splitIndex - 2)
leftNodeAgg(featureIndex)(2 * splitIndex + 1)
Expand Down Expand Up @@ -479,33 +472,43 @@ object DecisionTree extends Serializable with Logging {

//Find all splits
for (featureIndex <- 0 until numFeatures){
val featureSamples = sampledInput.map(lp => lp.features(featureIndex)).sorted

val stride : Double = numSamples.toDouble/numBins
logDebug("stride = " + stride)
for (index <- 0 until numBins-1) {
val sampleIndex = (index+1)*stride.toInt
val split = new Split(featureIndex,featureSamples(sampleIndex),"continuous")
splits(featureIndex)(index) = split
val isFeatureContinous = strategy.categoricalFeaturesInfo.get(featureIndex).isEmpty
if (isFeatureContinous) {
val featureSamples = sampledInput.map(lp => lp.features(featureIndex)).sorted

val stride : Double = numSamples.toDouble/numBins
logDebug("stride = " + stride)
for (index <- 0 until numBins-1) {
val sampleIndex = (index+1)*stride.toInt
val split = new Split(featureIndex,featureSamples(sampleIndex),Continuous)
splits(featureIndex)(index) = split
}
} else {
val maxFeatureValue = strategy.categoricalFeaturesInfo(featureIndex)
for (index <- 0 until maxFeatureValue){
//TODO: Sort by centriod
val split = new Split(featureIndex,index,Categorical)
splits(featureIndex)(index) = split
}
}
}

//Find all bins
for (featureIndex <- 0 until numFeatures){
bins(featureIndex)(0)
= new Bin(new DummyLowSplit("continuous"),splits(featureIndex)(0),"continuous")
= new Bin(new DummyLowSplit(Continuous),splits(featureIndex)(0),Continuous)
for (index <- 1 until numBins - 1){
val bin = new Bin(splits(featureIndex)(index-1),splits(featureIndex)(index),"continuous")
val bin = new Bin(splits(featureIndex)(index-1),splits(featureIndex)(index),Continuous)
bins(featureIndex)(index) = bin
}
bins(featureIndex)(numBins-1)
= new Bin(splits(featureIndex)(numBins-3),new DummyHighSplit("continuous"),"continuous")
= new Bin(splits(featureIndex)(numBins-3),new DummyHighSplit(Continuous),Continuous)
}

(splits,bins)
}
case MinMax => {
(Array.ofDim[Split](numFeatures,numBins),Array.ofDim[Bin](numFeatures,numBins+2))
throw new UnsupportedOperationException("minmax not supported yet.")
}
case ApproxHist => {
throw new UnsupportedOperationException("approximate histogram not supported yet.")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ class Strategy (
val impurity : Impurity,
val maxDepth : Int,
val maxBins : Int,
val quantileCalculationStrategy : QuantileStrategy = Sort) extends Serializable {
val quantileCalculationStrategy : QuantileStrategy = Sort,
val categoricalFeaturesInfo : Map[Int,Int] = Map[Int,Int]()) extends Serializable {

var numBins : Int = Int.MinValue

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@
*/
package org.apache.spark.mllib.tree.model

case class Bin(lowSplit : Split, highSplit : Split, kind : String) {
import org.apache.spark.mllib.tree.configuration.FeatureType._

case class Bin(lowSplit : Split, highSplit : Split, featureType : FeatureType) {

}
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,13 @@
*/
package org.apache.spark.mllib.tree.model

case class Split(feature: Int, threshold : Double, kind : String){
override def toString = "Feature = " + feature + ", threshold = " + threshold + ", kind = " + kind
import org.apache.spark.mllib.tree.configuration.FeatureType.FeatureType

case class Split(feature: Int, threshold : Double, featureType : FeatureType){
override def toString = "Feature = " + feature + ", threshold = " + threshold + ", featureType = " + featureType
}

class DummyLowSplit(kind : String) extends Split(Int.MinValue, Double.MinValue, kind)
class DummyLowSplit(kind : FeatureType) extends Split(Int.MinValue, Double.MinValue, kind)

class DummyHighSplit(kind : String) extends Split(Int.MaxValue, Double.MaxValue, kind)
class DummyHighSplit(kind : FeatureType) extends Split(Int.MaxValue, Double.MaxValue, kind)

Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.impurity.{Entropy, Gini}
import org.apache.spark.mllib.tree.model.Filter
import org.apache.spark.mllib.tree.configuration.Strategy
import org.apache.spark.mllib.tree.configuration.Algo._

class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {

Expand All @@ -48,7 +49,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
val arr = DecisionTreeSuite.generateOrderedLabeledPointsWithLabel1()
assert(arr.length == 1000)
val rdd = sc.parallelize(arr)
val strategy = new Strategy("regression",Gini,3,100,"sort")
val strategy = new Strategy(Regression,Gini,3,100)
val (splits, bins) = DecisionTree.find_splits_bins(rdd,strategy)
assert(splits.length==2)
assert(bins.length==2)
Expand All @@ -61,7 +62,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
val arr = DecisionTreeSuite.generateOrderedLabeledPointsWithLabel0()
assert(arr.length == 1000)
val rdd = sc.parallelize(arr)
val strategy = new Strategy("regression",Gini,3,100,"sort")
val strategy = new Strategy(Regression,Gini,3,100)
val (splits, bins) = DecisionTree.find_splits_bins(rdd,strategy)
assert(splits.length==2)
assert(splits(0).length==99)
Expand All @@ -87,7 +88,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
val arr = DecisionTreeSuite.generateOrderedLabeledPointsWithLabel1()
assert(arr.length == 1000)
val rdd = sc.parallelize(arr)
val strategy = new Strategy("regression",Gini,3,100,"sort")
val strategy = new Strategy(Regression,Gini,3,100)
val (splits, bins) = DecisionTree.find_splits_bins(rdd,strategy)
assert(splits.length==2)
assert(splits(0).length==99)
Expand All @@ -113,7 +114,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
val arr = DecisionTreeSuite.generateOrderedLabeledPointsWithLabel0()
assert(arr.length == 1000)
val rdd = sc.parallelize(arr)
val strategy = new Strategy("regression",Entropy,3,100,"sort")
val strategy = new Strategy(Regression,Entropy,3,100)
val (splits, bins) = DecisionTree.find_splits_bins(rdd,strategy)
assert(splits.length==2)
assert(splits(0).length==99)
Expand All @@ -138,7 +139,7 @@ class DecisionTreeSuite extends FunSuite with BeforeAndAfterAll {
val arr = DecisionTreeSuite.generateOrderedLabeledPointsWithLabel1()
assert(arr.length == 1000)
val rdd = sc.parallelize(arr)
val strategy = new Strategy("regression",Entropy,3,100,"sort")
val strategy = new Strategy(Regression,Entropy,3,100)
val (splits, bins) = DecisionTree.find_splits_bins(rdd,strategy)
assert(splits.length==2)
assert(splits(0).length==99)
Expand Down