Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions docs/mllib-frequent-pattern-mining.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,3 +96,99 @@ for (FPGrowth.FreqItemset<String> itemset: model.freqItemsets().toJavaRDD().coll

</div>
</div>

## PrefixSpan

PrefixSpan is a sequential pattern mining algorithm described in
[Pei et al., Mining Sequential Patterns by Pattern-Growth: The
PrefixSpan Approach](http://dx.doi.org/10.1109%2FTKDE.2004.77). We refer
the reader to the referenced paper for formalizing the sequential
pattern mining problem.

MLlib's PrefixSpan implementation takes the following parameters:

* `minSupport`: the minimum support required to be considered a frequent
sequential pattern.
* `maxPatternLength`: the maximum length of a frequent sequential
pattern. Any frequent pattern exceeding this length will not be
included in the results.
* `maxLocalProjDBSize`: the maximum number of items allowed in a
prefix-projected database before local iterative processing of the
projected databse begins. This parameter should be tuned with respect
to the size of your executors.

**Examples**

The following example illustrates PrefixSpan running on the sequences
(using same notation as Pei et al):

~~~
<(12)3>
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Need ~~~ quotes to align the input.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

OK

<1(32)(12)>
<(12)5>
<6>
~~~

<div class="codetabs">
<div data-lang="scala" markdown="1">

[`PrefixSpan`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan) implements the
PrefixSpan algorithm.
Calling `PrefixSpan.run` returns a
[`PrefixSpanModel`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel)
that stores the frequent sequences with their frequencies.

{% highlight scala %}
import org.apache.spark.mllib.fpm.PrefixSpan

val sequences = sc.parallelize(Seq(
Array(Array(1, 2), Array(3)),
Array(Array(1), Array(3, 2), Array(1, 2)),
Array(Array(1, 2), Array(5)),
Array(Array(6))
), 2).cache()
val prefixSpan = new PrefixSpan()
.setMinSupport(0.5)
.setMaxPatternLength(5)
val model = prefixSpan.run(sequences)
model.freqSequences.collect().foreach { freqSequence =>
println(
freqSequence.sequence.map(_.mkString("[", ", ", "]")).mkString("[", ", ", "]") + ", " + freqSequence.freq)
}
{% endhighlight %}

</div>

<div data-lang="java" markdown="1">

[`PrefixSpan`](api/java/org/apache/spark/mllib/fpm/PrefixSpan.html) implements the
PrefixSpan algorithm.
Calling `PrefixSpan.run` returns a
[`PrefixSpanModel`](api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html)
that stores the frequent sequences with their frequencies.

{% highlight java %}
import java.util.Arrays;
import java.util.List;

import org.apache.spark.mllib.fpm.PrefixSpan;
import org.apache.spark.mllib.fpm.PrefixSpanModel;

JavaRDD<List<List<Integer>>> sequences = sc.parallelize(Arrays.asList(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Create the local list first, to be consistent with the Scala example.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

OK

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actually, I modified Scala example to directly create RDD as well

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

either approach is fine:)

Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3)),
Arrays.asList(Arrays.asList(1), Arrays.asList(3, 2), Arrays.asList(1, 2)),
Arrays.asList(Arrays.asList(1, 2), Arrays.asList(5)),
Arrays.asList(Arrays.asList(6))
), 2);
PrefixSpan prefixSpan = new PrefixSpan()
.setMinSupport(0.5)
.setMaxPatternLength(5);
PrefixSpanModel<Integer> model = prefixSpan.run(sequences);
for (PrefixSpan.FreqSequence<Integer> freqSeq: model.freqSequences().toJavaRDD().collect()) {
System.out.println(freqSeq.javaSequence() + ", " + freqSeq.freq());
}
{% endhighlight %}

</div>
</div>

1 change: 1 addition & 0 deletions docs/mllib-guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ This lists functionality included in `spark.mllib`, the main MLlib API.
* [Feature extraction and transformation](mllib-feature-extraction.html)
* [Frequent pattern mining](mllib-frequent-pattern-mining.html)
* [FP-growth](mllib-frequent-pattern-mining.html#fp-growth)
* [PrefixSpan](mllib-frequent-pattern-mining.html#prefix-span)
* [Evaluation Metrics](mllib-evaluation-metrics.html)
* [Optimization (developer)](mllib-optimization.html)
* [stochastic gradient descent](mllib-optimization.html#stochastic-gradient-descent-sgd)
Expand Down