Skip to content
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
fix type miss 'val' to 'DataFrame' in Java code
  • Loading branch information
y-shimizu committed Sep 11, 2015
commit 193bddf51a6452c0dd67de2c3f872964467af088
8 changes: 4 additions & 4 deletions docs/ml-ensembles.md
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.DataFrame;

// Load and parse the data file, converting it to a DataFrame.
val data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");
DataFrame data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
Expand Down Expand Up @@ -392,7 +392,7 @@ import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.DataFrame;

// Load and parse the data file, converting it to a DataFrame.
val data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");
DataFrame data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Automatically identify categorical features, and index them.
// Set maxCategories so features with > 4 distinct values are treated as continuous.
Expand Down Expand Up @@ -652,7 +652,7 @@ import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.DataFrame;

// Load and parse the data file, converting it to a DataFrame.
val data sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");
DataFrame data sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
Expand Down Expand Up @@ -847,7 +847,7 @@ import org.apache.spark.rdd.RDD;
import org.apache.spark.sql.DataFrame;

// Load and parse the data file, converting it to a DataFrame.
val data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");
DataFrame data = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt");

// Automatically identify categorical features, and index them.
// Set maxCategories so features with > 4 distinct values are treated as continuous.
Expand Down