Skip to content
Prev Previous commit
Next Next commit
fixed a bunch of broken tests
  • Loading branch information
Maksym Zhelyeznyakov authored and Maksym Zhelyeznyakov committed Oct 17, 2025
commit 40b65990bd60d9f1a0462278ada30b79dec4fc6c
Original file line number Diff line number Diff line change
Expand Up @@ -282,7 +282,7 @@ class flat_linear_allocator
void add_checkpoint()
{
if (total_size_ > 0) {
checkpoints_.push_back(total_size_ - 1);
checkpoints_.push_back(total_size_); // - 1);
} else {
checkpoints_.push_back(0);
}
Expand Down
3 changes: 1 addition & 2 deletions include/boost/math/optimization/minimizer.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -275,8 +275,7 @@ struct unit_sphere_constraint
{
void operator()(ArgumentContainer& x) const
{
RealType norm2v = norm_2(x);
RealType norm = sqrt(norm2v);
RealType norm = norm_2(x);
if (norm > RealType{ 0 }) {
for (auto& xi : x)
xi /= norm;
Expand Down
6 changes: 4 additions & 2 deletions include/boost/math/optimization/nesterov.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -32,17 +32,19 @@ struct nesterov_update_policy
ArgumentType>::value>::type>
void operator()(ArgumentType& x, RealType& g, RealType& v)
{
RealType v_prev = v;
v = mu_ * v - lr_ * g;
x.get_value() += v;
x.get_value() += -mu_ * v_prev + (static_cast<RealType>(1) + mu_) * v;
}
template<typename ArgumentType,
typename std::enable_if<!boost::math::differentiation::reverse_mode::
detail::is_expression<ArgumentType>::value,
int>::type = 0>
void operator()(ArgumentType& x, RealType& g, RealType& v) const
{
const RealType v_prev = v;
v = mu_ * v - lr_ * g;
x += v;
x += -mu_ * v_prev + (static_cast<RealType>(1) + mu_) * v;
}
RealType lr() const noexcept { return lr_; }
RealType mu() const noexcept { return mu_; }
Expand Down
117 changes: 63 additions & 54 deletions test/test_functions_for_optimization.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,92 +14,101 @@

/* simple n-d quadratic function */
template<typename RealType>
RealType quadratic(std::vector<RealType> &x)
RealType
quadratic(std::vector<RealType>& x)
{
RealType res{0.0};
for (auto &item : x) {
res += item * item;
}
return res;
RealType res{ 0.0 };
for (auto& item : x) {
res += item * item;
}
return res;
}

template<typename RealType>
RealType quadratic_high_cond_2D(std::vector<RealType> &x)
RealType
quadratic_high_cond_2D(std::vector<RealType>& x)
{
return 1000 * x[0] * x[0] + x[1] * x[1];
return 1000 * x[0] * x[0] + x[1] * x[1];
}

// Taken from: https://en.wikipedia.org/wiki/Test_functions_for_optimization
template<typename Real>
Real ackley(std::array<Real, 2> const &v)
Real
ackley(std::array<Real, 2> const& v)
{
using boost::math::constants::e;
using boost::math::constants::two_pi;
using std::cos;
using std::exp;
using std::sqrt;
Real x = v[0];
Real y = v[1];
Real arg1 = -sqrt((x * x + y * y) / 2) / 5;
Real arg2 = cos(two_pi<Real>() * x) + cos(two_pi<Real>() * y);
return -20 * exp(arg1) - exp(arg2 / 2) + 20 + e<Real>();
using boost::math::constants::e;
using boost::math::constants::two_pi;
using std::cos;
using std::exp;
using std::sqrt;
Real x = v[0];
Real y = v[1];
Real arg1 = -sqrt((x * x + y * y) / 2) / 5;
Real arg2 = cos(two_pi<Real>() * x) + cos(two_pi<Real>() * y);
return -20 * exp(arg1) - exp(arg2 / 2) + 20 + e<Real>();
}

template<typename Real>
auto rosenbrock_saddle(std::array<Real, 2> const &v) -> Real
auto
rosenbrock_saddle(std::array<Real, 2> const& v) -> Real
{
Real x{v[0]};
Real y{v[1]};
return static_cast<Real>(100 * (x * x - y) * (x * x - y) + (1 - x) * (1 - x));
Real x{ v[0] };
Real y{ v[1] };
return static_cast<Real>(100 * (x * x - y) * (x * x - y) + (1 - x) * (1 - x));
}

template<class Real>
Real rastrigin(std::vector<Real> const &v)
Real
rastrigin(std::vector<Real> const& v)
{
using boost::math::constants::two_pi;
using std::cos;
auto A = static_cast<Real>(10);
auto y = static_cast<Real>(10 * v.size());
for (auto x : v) {
y += x * x - A * cos(two_pi<Real>() * x);
}
return y;
using boost::math::constants::two_pi;
using std::cos;
auto A = static_cast<Real>(10);
auto y = static_cast<Real>(10 * v.size());
for (auto x : v) {
y += x * x - A * cos(two_pi<Real>() * x);
}
return y;
}

// Useful for testing return-type != scalar argument type,
// and robustness to NaNs:
double sphere(std::vector<float> const &v)
double
sphere(std::vector<float> const& v)
{
double r = 0.0;
for (auto x : v) {
double x_ = static_cast<double>(x);
r += x_ * x_;
}
if (r >= 1) {
return std::numeric_limits<double>::quiet_NaN();
}
return r;
double r = 0.0;
for (auto x : v) {
double x_ = static_cast<double>(x);
r += x_ * x_;
}
if (r >= 1) {
return std::numeric_limits<double>::quiet_NaN();
}
return r;
}

template<typename Real>
Real three_hump_camel(std::array<Real, 2> const &v)
Real
three_hump_camel(std::array<Real, 2> const& v)
{
Real x = v[0];
Real y = v[1];
auto xsq = x * x;
return 2 * xsq - (1 + Real(1) / Real(20)) * xsq * xsq + xsq * xsq * xsq / 6 + x * y + y * y;
Real x = v[0];
Real y = v[1];
auto xsq = x * x;
return 2 * xsq - (1 + Real(1) / Real(20)) * xsq * xsq + xsq * xsq * xsq / 6 +
x * y + y * y;
}

// Minima occurs at (3, 1/2) with value 0:
template<typename Real>
Real beale(std::array<Real, 2> const &v)
Real
beale(std::array<Real, 2> const& v)
{
Real x = v[0];
Real y = v[1];
Real t1 = Real(3) / Real(2) - x + x * y;
Real t2 = Real(9) / Real(4) - x + x * y * y;
Real t3 = Real(21) / Real(8) - x + x * y * y * y;
return t1 * t1 + t2 * t2 + t3 * t3;
Real x = v[0];
Real y = v[1];
Real t1 = Real(3) / Real(2) - x + x * y;
Real t2 = Real(9) / Real(4) - x + x * y * y;
Real t3 = Real(21) / Real(8) - x + x * y * y * y;
return t1 * t1 + t2 * t2 + t3 * t3;
}

#endif
5 changes: 2 additions & 3 deletions test/test_nesterov_optimizer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,11 @@
#include <boost/math/optimization/nesterov.hpp>
namespace rdiff = boost::math::differentiation::reverse_mode;
namespace bopt = boost::math::optimization;
BOOST_AUTO_TEST_SUITE(basic_gradient_descent)
BOOST_AUTO_TEST_SUITE(nesterov_descent)

BOOST_AUTO_TEST_CASE_TEMPLATE(default_nesterov_test, T, all_float_types)
{
size_t NITER = 5;
T lr = T{ 1e-3 };
T lr = T{ 1e-4 };
T mu = T{ 0.95 };
RandomSample<T> rng{ T(-10), (10) };
std::vector<rdiff::rvar<T, 1>> x;
Expand Down
Loading