Skip to content
Merged
Binary file added doc/graphs/fourier_transform_daubechies.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
42 changes: 42 additions & 0 deletions doc/sf/daubechies.qbk
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,48 @@ The 2 vanishing moment scaling function.
[$../graphs/daubechies_8_scaling.svg]
The 8 vanishing moment scaling function.

Boost.Math also provides numerical evaluation of the Fourier transform of these functions.
This is useful in sparse recovery problems where the measurements are taken in the Fourier basis.
The usage is exhibited below:

#include <boost/math/special_functions/fourier_transform_daubechies_scaling.hpp>
using boost::math::fourier_transform_daubechies_scaling;
// Evaluate the Fourier transform of the 4-vanishing moment Daubechies scaling function at ω=1.8:
std::complex<float> hat_phi = fourier_transform_daubechies_scaling<float, 4>(1.8f);

The Fourier transform convention is unitary with the sign of the imaginary unit being given in Daubechies Ten Lectures.
In particular, this means that `fourier_transform_daubechies_scaling<float, p>(0.0)` returns 1/sqrt(2π).

The implementation computes an infinite product of trigonometric polynomials as can be found from recursive application of the identity 𝓕[φ](ω) = m(ω/2)𝓕[φ](ω/2).
This is neither particularly fast nor accurate, but there appears to be no literature on this extremely useful topic, and hence the naive method must suffice.

[$../graphs/fourier_transform_daubechies.png]

A benchmark can be found in `reporting/performance/fourier_transform_daubechies_performance.cpp`; the results on a ~2021 M1 Macbook pro are presented below:


Run on (10 X 24.1212 MHz CPU s)
CPU Caches:
L1 Data 64 KiB (x10)
L1 Instruction 128 KiB (x10)
L2 Unified 4096 KiB (x5)
Load Average: 1.33, 1.52, 1.62
-----------------------------------------------------------
Benchmark Time
-----------------------------------------------------------
FourierTransformDaubechiesScaling<double, 1> 70.3 ns
FourierTransformDaubechiesScaling<double, 2> 330 ns
FourierTransformDaubechiesScaling<double, 3> 335 ns
FourierTransformDaubechiesScaling<double, 4> 364 ns
FourierTransformDaubechiesScaling<double, 5> 386 ns
FourierTransformDaubechiesScaling<double, 6> 436 ns
FourierTransformDaubechiesScaling<double, 7> 447 ns
FourierTransformDaubechiesScaling<double, 8> 473 ns
FourierTransformDaubechiesScaling<double, 9> 503 ns
FourierTransformDaubechiesScaling<double, 10> 554 ns

Due to the low accuracy of this method, `float` precision is arg-promoted to `double`, and hence takes just as long as `double` precision to execute.

[heading References]

* Daubechies, Ingrid. ['Ten Lectures on Wavelets.] Vol. 61. Siam, 1992.
Expand Down
43 changes: 43 additions & 0 deletions example/calculate_fourier_transform_daubechies_constants.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
// (C) Copyright Nick Thompson 2023.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#include <utility>
#include <boost/math/filters/daubechies.hpp>
#include <boost/math/tools/polynomial.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/math/constants/constants.hpp>

using std::pow;
using boost::multiprecision::cpp_bin_float_100;
using boost::math::filters::daubechies_scaling_filter;
using boost::math::tools::polynomial;
using boost::math::constants::half;
using boost::math::constants::root_two;

template<typename Real, size_t N>
std::vector<Real> get_constants() {
auto h = daubechies_scaling_filter<cpp_bin_float_100, N>();
auto p = polynomial<cpp_bin_float_100>(h.begin(), h.end());

auto q = polynomial({half<cpp_bin_float_100>(), half<cpp_bin_float_100>()});
q = pow(q, N);
auto l = p/q;
return l.data();
}

template<typename Real>
void print_constants(std::vector<Real> const & l) {
std::cout << std::setprecision(std::numeric_limits<Real>::digits10 -10);
std::cout << "return std::array<Real, " << l.size() << ">{";
for (size_t i = 0; i < l.size() - 1; ++i) {
std::cout << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << l[i]/root_two<Real>() << "), ";
}
std::cout << "BOOST_MATH_BIG_CONSTANT(Real, std::numeric_limits<Real>::digits, " << l.back()/root_two<Real>() << ")};\n";
}

int main() {
auto constants = get_constants<cpp_bin_float_100, 1>();
print_constants(constants);
}
60 changes: 60 additions & 0 deletions example/fourier_transform_daubechies_ulp_plot.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
// boost-no-inspect
// (C) Copyright Nick Thompson 2023.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#include <boost/math/special_functions/fourier_transform_daubechies.hpp>
#include <boost/math/tools/ulps_plot.hpp>

using boost::math::fourier_transform_daubechies_scaling;
using boost::math::tools::ulps_plot;

template<int p>
void real_part() {
auto phi_real_hi_acc = [](double omega) {
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
return z.real();
};

auto phi_real_lo_acc = [](float omega) {
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
return z.real();
};
auto plot = ulps_plot<decltype(phi_real_hi_acc), double, float>(phi_real_hi_acc, float(0.0), float(100.0), 20000);
plot.ulp_envelope(false);
plot.add_fn(phi_real_lo_acc);
plot.clip(100);
plot.title("Accuracy of 𝔑(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
plot.write("real_ft_daub_scaling_" + std::to_string(p) + ".svg");

}

template<int p>
void imaginary_part() {
auto phi_imag_hi_acc = [](double omega) {
auto z = fourier_transform_daubechies_scaling<double, p>(omega);
return z.imag();
};

auto phi_imag_lo_acc = [](float omega) {
auto z = fourier_transform_daubechies_scaling<float, p>(omega);
return z.imag();
};
auto plot = ulps_plot<decltype(phi_imag_hi_acc), double, float>(phi_imag_hi_acc, float(0.0), float(100.0), 20000);
plot.ulp_envelope(false);
plot.add_fn(phi_imag_lo_acc);
plot.clip(100);
plot.title("Accuracy of 𝕴(𝓕[𝜙](ω)) with " + std::to_string(p) + " vanishing moments.");
plot.write("imag_ft_daub_scaling_" + std::to_string(p) + ".svg");

}


int main() {
real_part<3>();
imaginary_part<3>();
real_part<6>();
imaginary_part<6>();
return 0;
}
Loading