Skip to content
Merged
Changes from 1 commit
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
merge conflict
  • Loading branch information
patrickvonplaten committed Jul 10, 2023
commit ac1b78c4293a2bc0b7cf209b774de55cd471a50b
46 changes: 23 additions & 23 deletions src/compel/embeddings_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -378,6 +378,29 @@ def build_weighted_embedding_tensor(self,

return weighted_z

def _encode_token_ids_to_embeddings(self, token_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor:
text_encoder_output = self.text_encoder(token_ids,
attention_mask,
output_hidden_states=self.use_penultimate_clip_layer,
return_dict=True)

if self.requires_pooled:
pooled = text_encoder_output.pooler_output if "pooler_output" in text_encoder_output else text_encoder_output.text_embeds
else:
pooled = None

if self.use_penultimate_clip_layer:
# needs normalizing
penultimate_hidden_state = text_encoder_output.hidden_states[-2]

if self.use_penultimate_layer_norm:
penultimate_hidden_state = self.text_encoder.text_model.final_layer_norm(penultimate_hidden_state)
return (penultimate_hidden_state, pooled)
else:
# already normalized
return (text_encoder_output.last_hidden_state, pooled)

def _get_token_ranges_for_fragments(self, chunked_and_padded_token_ids: List[int], fragments: List[str]) -> List[Tuple[int, int]]:
"""
Match token id sequences for the strings in `fragments` with token id sequences in `chunked_and_padded_token_ids`,
Expand Down Expand Up @@ -511,26 +534,3 @@ def get_embeddings_for_weighted_prompt_fragments(self,
outputs += (pooled,)

return outputs

def _encode_token_ids_to_embeddings(self, token_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor]=None) -> torch.Tensor:
text_encoder_output = self.text_encoder(token_ids,
attention_mask,
output_hidden_states=self.use_penultimate_clip_layer,
return_dict=True)

if self.requires_pooled:
pooled = text_encoder_output.pooler_output if "pooler_output" in text_encoder_output else text_encoder_output.text_embeds
else:
pooled = None

if self.use_penultimate_clip_layer:
# needs normalizing
penultimate_hidden_state = text_encoder_output.hidden_states[-2]

if self.use_penultimate_layer_norm:
penultimate_hidden_state = self.text_encoder.text_model.final_layer_norm(penultimate_hidden_state)
return (penultimate_hidden_state, pooled)
else:
# already normalized
return (text_encoder_output.last_hidden_state, pooled)