This project is under active development, please stay tuned for updates. More documentation and examples are comming.
This library connects to Stanford CoreNLP either via HTTP or by spawning processes. The first (HTTP) is the preferred method since it requires CoreNLP to initialize just once to serve many requests, it also avoids extra I/O given that the CLI method need to write temporary files to run.
npm i --save corenlpVia npm, run this command from your own project after having installed this library:
npm explore corenlp -- npm run corenlp:downloadOnce downloaded you can easily start the server by running
npm explore corenlp -- npm run corenlp:serverOr you can manually download the project from the Stanford's CoreNLP download section at: https://stanfordnlp.github.io/CoreNLP/download.html You may want to download, apart of the full package, other language models (see more on that page).
# Run the server using all jars in the current directory (e.g., the CoreNLP home directory)
java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000 -timeout 15000CoreNLP connects by default via StanfordCoreNLPServer, using port 9000. You can also opt to setup the connection differently:
import CoreNLP, { Properties, Pipeline, ConnectorServer } from 'corenlp';
const connector = new ConnectorServer({ dsn: 'http://localhost:9000' });
const props = new Properties({
annotators: 'tokenize,ssplit,pos,lemma,ner,parse',
});
const pipeline = new Pipeline(props, 'English', connector);CoreNLP expects by default the StanfordCoreNLP package to be placed (unzipped) inside the path ${YOUR_NPM_PROJECT_ROOT}/corenlp/. You can also opt to setup the CLI interface differently:
import CoreNLP, { Properties, Pipeline, ConnectorCli } from 'corenlp';
const connector = new ConnectorCli({
classPath: 'corenlp/stanford-corenlp-full-2017-06-09/*', // specify the paths relative to your npm project root
mainClass: 'edu.stanford.nlp.pipeline.StanfordCoreNLP', // optional
props: 'StanfordCoreNLP-spanish.properties', // optional
});
const props = new Properties({
annotators: 'tokenize,ssplit,pos,lemma,ner,parse',
});
const pipeline = new Pipeline(props, 'English', connector);// ... initialize pipeline first (see above)
const sent = new CoreNLP.simple.Sentence('Hello world');
pipeline.annotate(sent)
.then(sent => {
console.log(sent.words());
})
.catch(err => {
console.log('err', err);
});NOTE1: The examples below assumes that StanfordCoreNLP is running on port 9000.
NOTE2: The examples below assumes es6 syntax, if you use require, use as follows: var CoreNLP = require('corenlp').default;
import CoreNLP, { Properties, Pipeline } from 'corenlp';
const props = new Properties({
annotators: 'tokenize,ssplit,pos,lemma,ner,parse',
});
const pipeline = new Pipeline(props, 'English'); // uses ConnectorServer by default
const sent = new CoreNLP.simple.Sentence('The little dog runs so fast.');
pipeline.annotate(sent)
.then(sent => {
console.log('parse', sent.parse());
console.log(CoreNLP.util.Tree.fromSentence(sent).dump());
})
.catch(err => {
console.log('err', err);
});We will update this section soon. In the meantime, you can browse the project codebase and read the @jsdoc referenecs.
In summary, this NodeJS library aims to replicate the CoreNLP Simple Java interface but in Javascript. There are some minor differences however, for example the need to call applyAnnotator asynchronously.
Properties
Pipeline
Service
ConnectorServer # https://stanfordnlp.github.io/CoreNLP/corenlp-server.html
ConnectorCli # https://stanfordnlp.github.io/CoreNLP/cmdline.html
CoreNLP
simple # https://stanfordnlp.github.io/CoreNLP/simple.html
Annotable
Annotator
Document
Sentence
Token
annotator # https://stanfordnlp.github.io/CoreNLP/annotators.html
TokenizerAnnotator # https://stanfordnlp.github.io/CoreNLP/tokenize.html
WordsToSentenceAnnotator # https://stanfordnlp.github.io/CoreNLP/ssplit.html
POSTaggerAnnotator # https://stanfordnlp.github.io/CoreNLP/pos.html
MorphaAnnotator # https://stanfordnlp.github.io/CoreNLP/lemma.html
NERClassifierCombiner # https://stanfordnlp.github.io/CoreNLP/ner.html
ParserAnnotator # https://stanfordnlp.github.io/CoreNLP/parse.html
DependencyParseAnnotator # https://stanfordnlp.github.io/CoreNLP/depparse.html
RelationExtractorAnnotator # https://stanfordnlp.github.io/CoreNLP/relation.html
DeterministicCorefAnnotator # https://stanfordnlp.github.io/CoreNLP/coref.html
util
Tree # http://www.cs.cornell.edu/courses/cs474/2004fa/lec1.pdfhttps://github.com/stanfordnlp/CoreNLP
Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language Processing Toolkit In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55-60.